为脱碳的美国经济提供动力不仅需要用清洁的可再生能源取代化石燃料发电厂,还需要将电力输送量增加约三倍。由于快速、灵活的电网将被分散,能源供应来源将增加一个数量级——从今天的数万个发电厂增加到数百万个资源的网络。而且由于这些资源大部分将是风能和太阳能,天气将极大地影响电力供应。总的来说,这些变化将改变电网的结构和运行。
在输出端,美联社的一个自动化公司收益报道制作项目提供了一个开创性的案例研究。从历史上看,美联社的财经新闻工作人员每三个月就要承担一项巨大的人力任务,即报道尽可能多的上市公司的收益。正如我们稍后将详细介绍的那样,三年前推出的一项自动化程序使该机构能够每季度将其公司收益报道的产量提高一个数量级,基本上涵盖了整个美国股市。
在全球范围内有效分布量子态是实施量子通信协议的关键挑战。虽然通过光纤直接传输可以实现数百公里的量子密钥分发 [ 1 ],但由于光子在光纤中的传输呈指数衰减,实现真正的全球距离仍然不可能。为了解决这个问题,人们提出了卫星链路,并已证明可以在相距 1100 多公里的双方之间分发纠缠的光子对 [ 2 , 3 ]。然而,由于双光子传输为 56 到 71 dB,地面站的双光子计数率受到限制。为了解决这个问题,我们研究了在卫星中加入量子存储器,这将使速率取决于单光子传输,从而有可能将速率提高三个数量级。对于量子密钥分发,我们发现,采用最先进的量子存储器可以达到与当前卫星相同的速率 [ 2 , 3 ]。我们建议采用一种上行链路协议,要求卫星中有两个记忆量子比特,相干时间为 0.2 秒,以达到 1.1 Hz 的双光子计数率。对于纠缠分布,我们发现卫星中没有记忆的设置可以产生最高的纠缠记忆速率,与卫星中有量子记忆的方案相比,地面上所需的记忆量子比特要少两个数量级,才能达到相同的速率。
开发大规模超导量子处理器的方法必须应对固态设备中普遍存在的大量微观自由度。最先进的超导量子比特采用氧化铝 (AlO x ) 隧道约瑟夫森结作为执行量子操作所需的非线性源。对这些结的分析通常假设一种理想化的纯正弦电流相位关系。然而,这种关系预计仅在 AlO x 屏障中透明度极低的通道极限下成立。在这里,我们表明标准电流相位关系无法准确描述不同样品和实验室中 transmon 人造原子的能谱。相反,通过非均匀 AlO x 屏障的介观隧穿模型预测了更高约瑟夫森谐波的百分比级贡献。通过将这些包括在 transmon 哈密顿量中,我们获得了计算和测量能谱之间数量级更好的一致性。约瑟夫森谐波的存在和影响对于开发基于 AlO x 的量子技术(包括量子计算机和参数放大器)具有重要意义。例如,我们表明,经过设计的约瑟夫森谐波可以将传输量子比特中的电荷分散和相关误差降低一个数量级,同时保持其非谐性。
然而,数字计算还有另一种范式,它有可能将数字技术的能效提高几个数量级,超出传统方法的限制。这种替代方案就是可逆计算,它的基础是避免数字信息的不可逆丢失及其相关信号能量的耗散。相反,我们可以以主要可逆的方式转换信息,同时将其几乎所有信号能量保持为有用的形式,以便在后续操作中重复使用。可逆计算的可行实现技术已在半导体和超导技术平台上得到验证。
Wageningen,自然环境中的荷兰塑料污染在本地和全球范围内都引起了人们的关注。了解塑料在环境中的分散对于有效实施预防措施和清理策略至关重要。在过去的几年中,已经开发了各种模型来估计河流中塑料在河流系统中的运输。但是,在离开河流系统的塑料量与在海洋中发现的塑料量之间存在很大的差异。在这里,我们通过对Riverine塑料出口估计值进行广泛的不确定性分析来研究这种不匹配的可能原因之一。我们检查了观测值,模型参数不确定性和模型中基本假设的不确定性。为此,我们使用了迄今为止最完整的大型观测时间序列(发现大型塑料包含来自河流运输的大多数塑料质量),来自三条欧洲河流。结果表明,模型结构和参数不确定性最多导致四个数量级,而塑料观测的均匀化则引入了估计值的另外三个数量级不确定性。此外,大多数全球模型都假定塑料通量的变化主要是由河流排放驱动的。但是,我们表明河流排放(和其他环境驱动因素)与塑料通量之间的相关性永远不会超过0.5,并且在集水区之间有很大的变化。总体而言,我们得出的结论是,河流中的年度塑料负荷仍然受到限制。
数十亿美元致力于推进测序技术。这导致了通过数量级的顺序和基于测序的应用程序爆炸的降低。但是,样品制备过程仍然是一个重要的瓶颈。手动处理样品时,样本质量,费力的协议和高样本成本仍然是可伸缩性和一致性的重要障碍。自动化液体处理程序可实现更高的吞吐量,但实施的重大障碍持续存在:昂贵的方法开发,高资本支出,对多重
高温(7000-8000 k)高电子密度(1014-1016cm)许多要素的电离程度可观程度的电离同时多元能力(超过70个要素(包括P和S)超过70个元素,包括P和S)低背景排放和相对较低的化学干扰高稳定性高稳定性准确性和准确性iestion for Optim-1 e元素(最佳量)。 宽线性动态范围(LDR)(四到六个数量级)。适用于耐火元件成本效益分析
抽象NBO 2是由于室温高于室温的绝缘体金属过渡而导致电阻开关设备的有前途的候选者,这与从变形金红石结构到未染色的相关相关。然而,到目前为止生产的NBO 2薄膜的电阻率太低,无法达到高开关开关比率。在这里,我们报告了通过脉冲激光沉积在MGF 2(001)底物上生长的单晶NBO 2(001)薄膜的结构,电和光学表征。退火步骤在NBO 2(004)X射线Bragg反射的一半最大宽度下减少了一个数量级,而膜的电阻率则增加了两个数量级,在室温下约为1kΩcm。退火样品的温度依赖性电阻率测量表明,低于650 K的两个深层缺陷,激活能为0.25 eV,0.37 eV占主导地位,而高于650 K的内在传导高于650 K。通过光谱椭圆法和与垂直于垂直于扭曲的金红石结构的C轴的电场矢量吸收的吸收测量值的光学表征,表明在室温下约0.76 eV的基本吸收开始,而在4 K时,发作转移到0.85 eV。这些光学转变被解释为在理论上预测的间接带隙的变形金红石NBO 2的间接带隙。
– 加速先进水分解技术的研究 – 利用当今的可再生能源和核能 – 通过 H2NEW 联盟在短短 5 年内实现 100 美元/千瓦电解器堆栈目标 – 包括对低温电解 [ LTE](PEM,液体碱性)和高温电解 [HTE](固体氧化物)电解器技术的研究 – 10 亿美元的 BIL 活动现在使电解方面的努力增加了一个数量级,以加速开发 • 长期:利用太阳能或热量更直接地分解水