预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此版本的版权持有人于2025年2月14日发布。 https://doi.org/10.1101/2025.02.13.637069 doi:Biorxiv Preprint
自现代计算机历史开始以来,图灵机一直是大多数计算设备的主导架构,它由三个基本组件组成:用于输入的无限磁带、读写头和有限控制。在这种结构中,读写头可以读取的内容(即比特)与其写入/输出的内容相同。这实际上不同于人类思考或进行思维/工具实验的方式。更准确地说,人类在纸上想象/书写的是图像或文本,而不是它们在人脑中所代表的抽象概念。这种差异被图灵机忽略了,但它实际上在抽象、类比和概括中起着重要作用,而这些对于人工智能至关重要。与这种架构相比,所提出的架构使用两种不同类型的读写头和磁带,一种用于传统的抽象比特输入/输出,另一种用于特定的视觉输入/输出(更像是一个屏幕或一个带有摄像头观察它的工作区)。抽象比特与具体图像/文本之间的映射规则可以通过卷积神经网络、YOLO、大型语言模型等神经网络实现,准确率较高。作为示例,本文介绍了新的计算机架构(我们在此简称为“任氏机”)如何自主学习特定域中的乘法分配属性/规则,并进一步使用该规则生成一种通用方法(混合在抽象域和特定域中)来计算基于图像/文本的任意正整数的乘法。
自现代计算机历史记录的开始以来,图灵机一直是大多数计算设备的主要体系结构,其中包括三个基本组件:无限磁带用于输入,读/写头和有限的控制。在此结构中,头可以读取的内容(即位)与已编写/输出的内容相同。这实际上与人类思考或思考/工具实验的方式不同。更确切地说,人类在纸上想象/写作是图像或文本,它们不是他们在人脑中所代表的抽象概念。Turing Machine忽略了这种差异,但实际上在抽象,类比和概括中起着重要作用,这在人工智能中至关重要。与此体系结构相比,所提出的体系结构使用两种不同类型的头部和磁带,一种用于传统的抽象位输入/输出,另一个用于特定的视觉(更像是屏幕或带有相机观察的屏幕或工作区)。抽象位和特定图像/文本之间的映射规则可以通过卷积神经网络,Yolo,大语言模型等神经网络实现,其精度很高。为例,本文介绍了新的计算机体系结构(为简单起见,我们称为“ Ren Machine”)如何自主地学习特定领域中的分布属性/多重规则,并进一步使用该规则来生成一般方法(在抽象领域和特定领域中混合使用),以计算基于图像/图像/图像的任何正面整体的MUL-PISTICATION)。机器的强推理能力也证实了在平面几何形状中的定理中。此外,提出了一种基于REN机器的机器人体系结构,以解决视觉语言行动(VLA)模型在不合适的推理能力和高计算成本中所面临的挑战。
本文介绍了HFUT-LMC团队对基于文本的人异常搜索(TPA)的www 2025挑战的解决方案。这一挑战的主要目标是准确识别大型行人图像库中表现出正常行为或异常行为的步调。与传统的视频分析任务不同,TPA非常强调理解和解释文本描述与视觉数据之间的微妙关系。此任务的复杂性在于该模型不仅需要将个人与大量图像数据集中的文本描述匹配,而且还可以准确地区分搜索结果,而搜索结果则在遇到模拟描述时。为了克服这些挑战,我们介绍了相似性覆盖率分析(SCA)策略,以解决由类似文本描述引起的参考难度。此策略有效地增强了模型管理微妙差异的能力,从而提高了搜索的准确性和可靠性。我们提出的解决方案在这一挑战中表现出色。
合成孔径雷达(SAR)图像合成和模拟在传感器设计和辅助处理算法评估中具有不同的应用。传统上,这个领域依靠基于物理的模拟,使用车辆和场景的电磁建模。但是,深度神经网络技术的出现导致努力将这些方法应用于SAR图像的产生。早期网络体系结构主要利用会议网络和生成对抗网络(GAN)框架。这些网络(包括一代和歧视者)的规模受到限制,通常与小图像大小一起工作。它们通常是在成对的图像上操作的,例如光学和SAR图像或同一区域的不同频率SAR图像,旨在将一种图像类型转换为另一种图像类型,类似于样式的Transfer。这种方法需要从头开始培训,提出与模型深度和数据集大小相关的挑战。最近的研究引入了基础模型,由Meta的细分市场(SAM),Llama和Runway的稳定扩散所阐明。这些基于变压器的模型在大型开放数据集,数十亿个参数和出色的概括功能上进行了大量培训,尽管接受了互联网采购的数据培训。与以前的模型相比,基础模型提供了最小化的优势,利用其固有的功能。但是,它们需要强大的GPU,并在较小的数据集上进行仔细调整以防止过度插入。接下来,我们将讨论与我们的域相关的各种调整方法。我们详细介绍了我们的图像在本文中,我们介绍了使用Real Onera Sethi X Band Sar Images进行拟合的结果。我们从第2节开始,简要概述了该模型的体系结构,组件和Intial培训数据。
目的:由于其非结构化的性质,处理和分析临床文本具有挑战性。本研究比较了GPT(生成预训练的变压器)-3.5和GPT-4的性能,用于从临床文本中提取信息。材料和方法:将三种类型的临床文本包含患者特征,病史和临床测试结果从开放式期刊中的病例报告中提取的临床测试结果被用作输入。随后,使用贪婪方法作为解码策略将包含信息提取查询的简单提示应用于两个模型。当GPT模型在某些任务中的表现不佳时,我们将使用特定于任务定义的替代解码策略或合并提示。将GPT模型产生的输出评估为真或错误,以确定信息提取的准确性。结果:从60个病例报告中提取了包含患者特征(60个文本),病史(50个文本)和临床测试结果(25个文本)的临床文本。GPT模型可以通过简单提示准确提取信息,以从临床文本中提取直接信息。与GPT-4相比,GPT-4的准确率明显更高(95%),而GPT-3.5(70%)。GPT-3.5(78%)在提取体重指数(BMI)中的表现优于GPT-4(57%)。利用性行为和BMI的替代解码策略并不能实际改善这两种模型的性能。在GPT-4中,修订的提示(包括每个性别类别的定义)或BMI公式的定义,纠正了所有关于在主要工作流程中产生的性别和BMI的不正确响应。结论:GPT模型可以通过简单提取直接信息的简单提示来充分发挥作用。对于复杂的任务,将特定于任务的定义纳入提示是一种合适的策略,而不是仅依靠简单的提示。因此,研究人员和临床医生应使用其专业知识来创建有效的提示,并在从临床文本中提取复杂信息时监控LLM结果。
“ green_eggs_and_ham.txt”,“ cat_in_the_hat.txt”,“ fox_in_socks.txt”,“ how_the_grinch_stole_stole_stole_stole_christmas.txt”,“ hop_on_pop.txt “ One_fish_two_fish.txt”]
通过技术工具对学术文献的分析允许识别模式和新兴主题,从而促进了对当前研究趋势的更深入的了解。 div>使用术语频率分析(TF-IDF)和主题的建模(LDA)的使用已显示在提取关键模式,揭示主要的研究领域和新兴领域,然后才能有效。 div>通过对主题的建模,确定了概念之间的复杂关系,并实现了文学动力学的更细微的愿景。 div>此外,对CO的作者和引文网络的分析还为作者与思想如何在科学界传播的关系提供了更广泛的了解。 div>跨学科性是新兴问题的重要特征,因为其中许多涉及多学科研究领域,例如数字健康和绿色技术。 div>但是,尽管技术工具具有优势,但需要人干预才能正确解释结果,因为算法可能无法捕获主题的完整背景。 div>总之,这些工具提高了学术分析的效率,但必须与专家解释相结合,以确保它们的精确性和相关性。 div>关键字:学术文本,新兴模式,文本挖掘,合作授权网络,跨学科。 div>
