我们提出了一种通用的去噪算法,用于同时对量子态和测量噪声进行层析成像。该算法使我们能够充分表征任何量子系统中存在的状态准备和测量 (SPAM) 误差。我们的方法基于对由幺正运算引起的线性算子空间的属性的分析。给定任何具有噪声测量设备的量子系统,我们的方法可以输出探测器的量子态和噪声矩阵,最高可达单个规范自由度。我们表明,这种规范自由度在一般情况下是不可避免的,但这种退化通常可以使用关于状态或噪声属性的先验知识来打破,从而为几种类型的状态噪声组合固定规范,而无需对噪声强度进行假设。这样的组合包括具有任意相关误差的纯量子态,以及具有块独立误差的任意状态。该框架可以进一步使用有关设置的可用先验信息来系统地减少状态和噪声检测所需的观察和测量次数。我们的方法有效地推广了现有的解决问题的方法,并且包括了文献中考虑的需要不相关或可逆噪声矩阵或特定探测状态的常见设置作为特殊情况。
对于所有次要目标,都提供了估计值和相应的 95% 置信区间,以说明估计值的精确度。该研究采用了完全交叉设计,所有读者在两次访问中查看所有案例的图像,两次访问之间间隔 4 周或更长时间的记忆洗脱期,两次访问中使用和不使用 ProFound AI 阅读同一案例。每位读者被分配在第一次访问期间查看一半使用 ProFound AI 的案例和另一半不使用 ProFound AI 的案例,在第二次访问期间以平衡的方式查看使用和不使用 ProFound AI 的互补案例,这样每位读者都在使用和不使用 ProFound AI 的情况下阅读了所有案例。每个读者的案例阅读顺序都是随机分配的。读者被告知正在测量阅读时间,并且 ProFound AI 旨在减少阅读时间,但读者不知道每个案例的阅读时间测量值。
汽车和航空航天领域以及最近的增材制造 (AM) 越来越多地使用 X 射线计算机断层扫描 (XCT) 作为一种无损技术 (NDT) 来检查现代部件的内部和外部特征(几何形状、表面形貌和缺陷),在某些情况下,这些特征是无法使用传统测量技术进行评估的 [1-3]。XCT 仪器在多个角度位置捕获物体/部件的一系列射线投影,随后用于重建该物体的三维 (3D) 表示,如图 1-A 所示。与物体相关的 3D 表示由一组体素组成,这些体素的灰度值与对应于背景的体素的强度不同。在图 1-A 所示的示例中,深灰色体素代表背景,浅灰色体素代表物体(或前景)。几何测量值来自物体的表面,而表面必须从物体的 3D 表示中建立。从初始投影到最终的几何评估,影响测量结果的因素有很多,例如仪器对准、焦点稳定性、用户定义的扫描参数、材料、几何形状、光子-材料相互作用、部件方向、重建和表面确定 (SD) 算法 [4,5]。SD 在 XCT 测量模型中起着至关重要的作用,因为它会影响其他因素对几何测量的影响,即它们相关的灵敏度系数 [6]。SD 算法的作用是
引言下膜血肿(SDHS)也称为创伤性脑损伤(TBI)。SDH可以在任何年龄发生,但最常见于65岁或以上的老年人口(Kwon等,2022)。硬膜下血肿每100,000个人中约21个,并且变得越来越普遍(Kung&Lin,2020)。计算机断层扫描(CT)是一种成像方式,可使用X射线产生横截面图像。X射线管和检测器围绕感兴趣的区域旋转360度,从而在CT扫描过程中产生横截面图像。这些图像可以在多个平面中重新格式化,甚至可以生成在计算机监视器上查看的三维图像。(Long等,2019)。ct是由于短扫描时间和产生的图像而检测SDHS的首选成像方式。(Kwon等,2022)。
受其对大多数容错量子计算方案的必要性的启发,我们为魔法状态制定了资源理论。我们首先表明,魔法的鲁棒性是一种行为良好的魔法单调,它操作性地量化了使用辅助魔法状态的 Gottesman-Knill 类型方案的经典模拟开销。我们的框架随后在使用魔法状态合成非克利福德门的任务中得到了直接应用。当魔法状态与克利福德门、泡利测量和稳定器辅助元素交错时(最一般的合成场景),可合成单元类很难表征。我们的技术可以对实现给定目标单元所需的魔法状态数量设置非平凡的下限。在这些结果的指导下,我们找到了这种合成的新示例和最佳示例。
摘要 — 随着商用量子计算机种类的不断增加,对能够表征、验证和确认这些计算机的工具的需求也在不断增加。这项工作探索了使用量子态断层扫描来表征单个量子比特的性能,并开发了矢量场可视化来呈现结果。所提出的协议在模拟和 IBM 开发的量子计算硬件上进行了演示。结果确定了此硬件标准模型中未反映的量子比特性能特征,表明有机会提高这些模型的准确性。所提出的量子比特评估协议作为免费开源软件提供,以简化在其他量子计算设备上复制该过程的任务。索引术语 — 量子计算、量子态断层扫描、量子比特基准
基于地质调查,Lampung的地质状况受到苏门答腊岛西侧的苏门答腊大型群岛的影响,从利瓦山谷(Liwa Valley)到塞曼科湾(Semangko Bay)的拉瑙湖(Ranau Lake)的大苏门特断层区域。它们是kumering故障和semangko故障。kumering故障是位于拉瑙湖(Ranau Lake)附近的一个主动断层,而Semangko断层是Suoh Valley和Semangko Bay附近发现的活跃故障。在两个有效断层交叉的两个位置,已经建造了几种可再生能源,并且有可能用于开发和建设,尤其是水力发电厂和地热植物。Ranau-Suoh湖谷之间有几个水电位置。其中一个是正在研究地质危害潜力的水力发电厂。同时,对于Suoh Valley,地热发电厂有一些潜在的区域。
摘要。光电子学的最新进展首次使可穿戴和高密度功能性近红外光谱 (fNIRS) 和漫反射光学断层扫描 (DOT) 技术成为可能。这些技术有可能在几乎任何环境和人群中以与 fMRI 相当的分辨率对人类皮层进行功能性神经成像,从而开辟现实世界神经科学的新领域。在这篇观点文章中,我们简要概述了可穿戴高密度 fNIRS 和 DOT 方法的历史和现状,讨论了当前面临的最大挑战,并提出了我们对这项非凡技术未来的看法。© 作者。由 SPIE 根据知识共享署名 4.0 国际许可出版。分发或复制本作品的全部或部分内容需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.NPh.10.2.023513]
拜占庭式缺陷耐受性(BFT)状态机器复制(SMR)协议构成了现代区块链的基础,因为它们在所有区块链节点上保持一致的状态,同时耐受界数的拜占庭故障数量。我们在过度故障设置中遇到了Alyze BFT SMR,拜占庭断层的实际数量超过了协议的公差。我们首先设计了第一种基于链式和法定人数的第一种修复算法部分同步SMR,以从过度故障引起的错误状态中恢复。可以使用任何佣金故障检测模块来实现此类过程 - 一种算法,该算法可以识别故障复制品而不错误地找到任何正确的复制品。我们以稍弱的可将其保证来实现这一目标,因为在过多的故障的情况下,原始的策略概念是不可能满足的。我们在Rust中实现可回收的热门。在恢复例程终止7副复制品后,通行简历达到了正常水平(没有过多的故障),并略微缩短了≤4。30副复制品的3%。平均而言,它将延迟增加12。7%的7%和8个复制品。30副本的85%。除了采用现有检测模块外,我们还为一般的BFT SMR供应机构建立了足够的条件,以便在最多(n-2)拜占庭式复制品(来自n个总复制品中)的完全故障检测。我们首先为任何SMR协议提供第一个闭合盒故障检测算法,而无需任何额外的通信。然后,我们在Tendermint和Hotstuff中描述了我们的断层检测例程的开盒构成,进一步逐渐降低了渐近和具体的开销。