Selected Conference Topics Fault detection and isolation Fault tolerant control / fault recovery Cyber- physical security Resilience Networked control system Health monitoring Intrusion detection in CPS Decision making AI for fault diagnosis Discrete event and hybrid systems Supervisory control Fault-forecasting methods Data-driven methods Maintenance policies Risk analysis Safety Control Transportation systems Automobile Ground / Aerial Autonomous vehicles Power plants / energy transport Chemical processes Aeronautics / aerospace土木工程水分配系统通信网络机器和机器人医疗设备puigupc,spainvicenc.puig(at)upc.eduifac safeprocess tc6.4
自从引入和发展功能性神经成像以来,对人类大脑功能的研究取得了长足的进步。功能性磁共振成像 (fMRI) 和正电子发射断层扫描 (PET) 一直处于这一发展的前沿,但它们也存在局限性。两者都对参与者的行动能力施加了重大限制,这阻碍了它们在婴儿等具有挑战性的人群中的应用以及在研究涉及运动的神经过程和行为方面的应用。由于相关成本、狭窄的扫描仪环境以及(就 PET 而言)放射性示踪剂的使用,延长或重复监测也很困难。1、2 此外,fMRI 对电子或金属植入物(如起搏器、人工耳蜗、动脉瘤夹和手术器械)有禁忌症。由于 MRI 和 PET 设备体积大、固定,并且要求参与者平躺,因此在日常场景中(例如面对面交谈时)研究大脑非常困难。近年来,漫射光学方法在克服这些局限性方面显示出了巨大的潜力。3、4 功能性近红外光谱 (fNIRS) 使用近红外光来检测大脑功能。它使用放置在头皮上的光源和探测器阵列来监测大脑氧合血红蛋白和脱氧血红蛋白浓度的变化,并可以提供空间分辨率为 3 厘米的二维图像。5、6 高密度漫射光学断层扫描 (HD-DOT) 是使用高密度测量阵列的 fNIRS 方法的外推。尽管在这种情况下“高密度”的定义尚未准确确定,但适当的定义是,HD-DOT 阵列提供具有几种不同源 - 探测器分离的通道,跨越“短分离(SS)”(<15 毫米)到“长”(≥30 毫米)范围,并在整个视野范围内在每个分离处提供重叠的空间灵敏度曲线。现已确定 HD-DOT 可以提供比 fNIRS 或其他弥散光学成像方法更优质的深度分辨图像。7 – 9 从多个重叠通道测量中获得的相互信息提高了空间分辨率,使用多个源 - 探测器分离可提高横向和深度特异性。此外,以不同的源 - 探测器分离进行采样提供了一种减少来自脑外组织信号影响的方法。10、11
自从引入和发展功能性神经成像以来,对人类大脑功能的研究取得了长足的进步。功能性磁共振成像 (fMRI) 和正电子发射断层扫描 (PET) 一直处于这一发展的前沿,但它们也存在局限性。两者都对参与者的行动能力施加了重大限制,这阻碍了它们在婴儿等具有挑战性的人群中的应用以及在研究涉及运动的神经过程和行为方面的应用。由于相关成本、狭窄的扫描仪环境以及(就 PET 而言)放射性示踪剂的使用,延长或重复监测也很困难。1、2 此外,fMRI 对电子或金属植入物(如起搏器、人工耳蜗、动脉瘤夹和手术器械)有禁忌症。由于 MRI 和 PET 设备体积大、固定,并且要求参与者平躺,因此在日常场景中(例如面对面交谈时)研究大脑非常困难。近年来,漫射光学方法在克服这些局限性方面显示出了巨大的潜力。3、4 功能性近红外光谱 (fNIRS) 使用近红外光来检测大脑功能。它使用放置在头皮上的光源和探测器阵列来监测大脑氧合血红蛋白和脱氧血红蛋白浓度的变化,并可以提供空间分辨率为 3 厘米的二维图像。5、6 高密度漫射光学断层扫描 (HD-DOT) 是使用高密度测量阵列的 fNIRS 方法的外推。尽管在这种情况下“高密度”的定义尚未准确确定,但适当的定义是,HD-DOT 阵列提供具有几种不同源 - 探测器分离的通道,跨越“短分离(SS)”(<15 毫米)到“长”(≥30 毫米)范围,并在整个视野范围内在每个分离处提供重叠的空间灵敏度曲线。现已确定 HD-DOT 可以提供比 fNIRS 或其他弥散光学成像方法更优质的深度分辨图像。7 – 9 从多个重叠通道测量中获得的相互信息提高了空间分辨率,使用多个源 - 探测器分离可提高横向和深度特异性。此外,以不同的源 - 探测器分离进行采样提供了一种减少来自脑外组织信号影响的方法。10、11
然而,导航的重大限制在于假设大脑和颅骨是刚性结构[6,5,23],但在手术过程中,由于 Kelly 等人 [8] 在 1986 年描述的脑移位现象,这限制了外科医生在术前图像和术中解剖结构之间能够实现的关联。 [14] 这是由于脑组织扭曲造成的,有几项研究记录了脑组织的手术操作、组织肿胀和脑脊液流失以及脑牵开器的使用 [4,13,17] 是造成这种与时间相关的动态时空事件的原因。 [25] 这会导致导航系统中的图像不正确,并可能使手术不准确。 脑移位现象可能发生在皮层和深层脑结构中 [5],这可能导致大脑重要区域的损伤,例如在胶质瘤手术中。 [28] 外科界尚未就导航本身是否能够改善手术结果达成共识,但认识到需要一个更准确的解决方案,而这一解决方案可以通过术中成像方式提供的实时图像来解决。
我们报告了针对单和双量子比特偏振态的光子集合的量子态断层扫描的实验实现。我们的实现基于 James、Kwiat、Munro 和 White [ 1 ] 的工作,他们基于局部投影测量提供了良好的断层扫描重建。我们描述了从激光源制备的单量子比特态的理论和实验断层扫描测量,并展示了三个正交基的密度矩阵的断层扫描重建。此外,我们还描述了在下转换实验中产生的一对纠缠光子的两个偏振自由度的量子态断层扫描的理论和实验实现。讨论了两种不同的技术:一种是线性重建,其中密度矩阵由巧合测量构建,但可能会产生非物理密度矩阵,另一种是最大似然估计技术,可产生物理密度矩阵。最后,我们还讨论了 II 型 BBO 晶体中下转换光子的时间补偿及其对 2 量子比特态断层重建的影响,并给出了 SPDC 源的密度矩阵的断层重建。
第三纪熔岩流动和脉络水沉积物在马尔帕斯倾斜坡上散发出来。这种麦尔波去射坡度是一个较旧的正常断层系统,即邓菲通断层区,具有西北趋势。该渐新世至中新世断层区形成了西北主要的抓地力的Thie Easters边缘,这是750公里长的线性空气磁性和结构特征的南部延伸的一部分,称为俄勒冈州内华达州的谱系(Stewart等人,Stewart等,1975年)。Graben中的第三纪火山截面约为1,400 m; Dunphy Pass断层区的东部仅100 m厚。基础的奥陶纪瓦尔米形成是一个严重破裂的硅质eugeosynclinal沉积物,该沉积物是罗伯茨山脉推力板的一部分。碳质粉砂岩,cher和石英岩的瓦尔米地层沿着Dunphy Pass断层区以东的Malpais边缘散发出来,并由Whirlwind Valley的深层地热测试井遇到。第三级糖尿病碱基堤防被侵入瓦尔米和火山岩石被认为是与俄勒冈州内华达谱系相关的明显空气磁异常的来源,以及填充graben的第三纪火山序列的饲养者(Robinson,1970年)。
地质碳捕获和存储(CCS)是减轻温室气体排放的关键技术,但泄漏的风险仍然是一个重大问题。跨密封间隔的故障和断裂网络是CO 2逃脱存储库的潜在途径,因此需要准确评估其渗透率和连通性。我们的研究提出了一种对断层区域地质泄漏进行建模的综合方法,将单断层应力 - 透明度实验室测量与详细的断裂露头数据相结合,以模拟碳存储的原位条件。我们研究了由konusdalen West区域(挪威Svalbard)的正常断层切割的Caprock序列,这是Longyearbyen Co 2实验室储层的区域密封,以及与Barents和North Sean Seas Caprock地层的类似物。数字化露头裂缝网络,我们探索了断裂尺寸分布的变化及其在断层区不同部分中的连接性。这些参数是基本的,以确定断裂网络是否提供了可渗透途径。将露头分析与实验室测量相结合,使我们能够创建自然断裂网络的耦合水力力学模型,并评估其高尺度的渗透性。我们发现,断裂网络几何形状在整个断层区域各不相同,从而导致不同的高尺度渗透率模型,从而突出了将详细的断裂网络信息纳入渗透性模拟中的重要性。我们的研究提供了一个框架,将断裂通透性测量和露头分析纳入故障区域的地质泄漏建模,这可以为CCS项目的设计和操作提供信息,并有助于减轻与CO 2的地质存储相关的风险。
摘要Kootenay Lake Project区域是几次热/温暖的春季事件,特别是Ainsworth,Riondel和Crawford Creek。ktunaxa第一民族的人民经历了数千年的温泉,目前拥有并经营着Ainsworth Hot Springs Resort。在Riondel历史悠久的蓝铃矿中,在采矿作业期间遇到了40°C的温度和每秒150升的流量(Desrochers,1992)。深,热能映射说明,库特尼湖地区的建模热能比卑诗省内的广义背景高约25-40%(Majorowicz&Grasby,2010年)。BC中的大多数热弹簧都发生在主要断层的近端,这些断层深层渗透到地壳中(最多5 km),并且具有脆性变形的相对较新的(始新世或更年轻)的成分,这有助于从大深度到表面的快速流体流动(Grasby&Hutcheon,2001年)。Crawford Creek Warm Spring(32°C)位于项目区域内,是第三阶段进行的工作的重点。这个温暖的弹簧占据了Neoperorogiac Hamill地层石英岩中,靠近一个主要断层,称为Orebin Creek断层。
作为审查的一部分,WCS进行了2D地震和核心分析,以识别注射井附近的断层和断裂。这项研究中发现的唯一断层发生在上前寒武纪和下部寒武纪Simon的形成和未鉴定出横断注射形成或上覆岩石单位的断层或尸体。基于WCS进行的测试钻孔,注射区的底部(Potosi形成)发生在大约5,162英尺的深度。与后底层底部的垂直分离大约有2700英尺Simon组。eau claire组位于波托西构成的底部和山顶Simon组成,将作为限制注射流体向下迁移到Mt. 的障碍 Simon组。Simon组成,将作为限制注射流体向下迁移到Mt.Simon组。
注射引起的地震性已成为广泛部署增强的地热系统(例如)最关键的挑战之一。尤其是,一些EGS开发项目导致大型,破坏性的地震出乎意料地发生在刺激的储层区域,尤其是在停止液体注入后。然而,这些地震性模式的病因机制仍然高度难以捉摸。在这里,我们确定了可以通过对天然裂缝花岗岩储层的液压刺激进行完全耦合的液态力学模拟来解释EGS部位延迟地震性的组合。该模型包括一个稀疏的网络,该网络与附近的,非常面向的断层相互作用,该网络与长而变化的裂缝相互作用。结果表明,裂缝的存在在流场和岩石变形中引入了显着的非线性,并显着扩大了受液体注入影响的岩石体积。首先,受刺激的断裂网络提供了高度可渗透的吊带,用于在长时间的情况下传达较高的孔隙压力。第二,裂缝的各向异性膨胀会产生剪切应力,几乎在整个储层上迅速传播。孔隙压力和压力扰动不仅会导致沿裂缝滑动,在注射过程中诱导(微)地震性,而且会影响附近断层的稳定性,这可能不一定会在注射过程中加压。转移的毛弹性应力可以增加或减少沿不同断层段的滑动趋势。然而,当注射后几个月后,当临时断层渗透率演化调节的渐进孔压扩散后,断层才能重新激活。我们还发现,地震性的时空演化在很大程度上取决于附近的断层方向,水力力学特性以及与断裂网络的液压连接以及应力的初始状态。我们得出的结论是,在注射过程中和注射后的准确地下表征和连续监测应允许管理注射诱导的地震性带来的风险,并安全地解锁了清洁和可持续的地热能的巨大潜力。