我们提出了几个与罗伯逊-薛定谔不确定关系相关的不等式。在所有这些不等式中,我们考虑将密度矩阵分解为混合状态,并利用罗伯逊-薛定谔不确定关系对所有这些成分都有效的事实。通过考虑边界的凸顶部,我们获得了 Fröwis 等人在 [ Phys. Rev. A 92 , 012102 (2015) ] 中的关系的另一种推导,并且我们还可以列出使关系饱和所需的许多条件。我们给出了涉及方差凸顶部的 Cramér-Rao 边界的公式。通过考虑罗伯逊-薛定谔不确定关系中混合状态分解的边界的凹顶部,我们获得了罗伯逊-薛定谔不确定关系的改进。我们考虑对具有三个方差的不确定性关系使用类似的技术。最后,我们提出了进一步的不确定性关系,这些关系基于双模连续变量系统的标准位置和动量算符的方差,为二分量子态的计量实用性提供了下限。我们表明,在 Duan 等人 [ Phys. Rev. Lett. 84 , 2722 (2000) ] 和 Simon [ Phys. Rev. Lett. 84 , 2726 (2000) ] 的论文中讨论了这些系统中众所周知的纠缠条件的违反,这意味着该状态在计量学上比某些相关的可分离状态子集更有用。我们给出了有关自旋系统具有角动量算符的纠缠条件的类似结果。
脑机接口不需要任何肌肉能力就能进行交流,因此被广泛研究用于帮助运动障碍患者。脑电图 (EEG) 作为一种低成本、轻量级的技术,是记录大脑活动产生的电位的常用方法 [1]。尽管 BCI 有着广泛的临床应用,但它却无法在实验室外使用。需要克服的主要挑战之一是受试者之间高度的差异性,在文献中称为“BCI 效率低下”现象,相当一部分用户即使经过几次训练后仍无法控制 BCI 设备。解决这个问题的有效方法之一是改进神经解码器 [2]。为此,研究得出了依赖于协方差矩阵的新特征,例如,对于 𝑇 信号样本的 EEG 信号 𝑋,𝐶𝑜𝑣 = 1 𝑇 −1 𝑋𝑋 ⊤,以及邻接矩阵。这些邻接矩阵是
摘要 自动建筑物提取最近被认为是遥感操作中的一项活跃研究。它已经进行了 20 多年,但由于图像分辨率、变化和细节级别,自动提取仍然遇到问题。由于物体密度高和场景复杂,这将是一个更大的挑战,尤其是在城市地区。本文将介绍一个高分辨率全色图像的理想框架,有助于可靠和准确的建筑物提取操作。提出的框架以及对领域知识(空间和光谱特性)的考虑提供了诸如场景中物体的性质、它们的光学相互作用及其对结果图像的影响等特征。为了更好地分析场景的几何性质,我们使用数字表面模型 (DSM)。已使用来自 IKONOS 和 QuickBird 卫星的各种图像对提出的算法进行了评估。结果表明,与最先进的方法相比,所提出的算法准确且有效。
根据IPCC原则,IPCC进行“全面,客观,开放和透明”评估的科学文献的指数增长和增加的复杂性,使IPCC的任务变得复杂
风能和太阳能占比的增加导致电力生产方差增大。我们总结了为什么这不一定会导致电力现货价格方差增大,但——取决于供应曲线的形状和可再生能源生产的方差——可能导致价格方差减小。扩展 Wozabal 等人 (2016) 的方法,面板模型和对所分析的九个欧洲国家中的七个国家的单一国家回归结果证实了可再生电力生产份额与价格方差之间的 U 形关系。虽然大多数国家的最小价格方差在 10% 到 40% 之间,但份额越低和越高,价格方差就越大。出口和进口能力、灵活发电厂和水力(抽水)储存的可用性对于一个国家平衡价格方差的能力比可再生能源输入本身的水平和方差更重要。几个国家(例如丹麦)展示了这些因素如何促进可再生能源高份额的成功整合。研究发现,许多欧洲国家的价格差异在再次上升之前会下降,这呼吁制定政策以确保在价格差异较低时期对灵活性选项(如电网扩建、存储设施、灵活发电厂和需求侧管理)的投资,因为此时基于市场的解决方案可能会失败,并最终导致电力系统稳定性受到威胁。
同样,由于没有套利,对于风险资产的所有终值,两种收益都不会大于另一种。如附录 3 所示,ν T 的期望值高于 Black 和 Scholes 模型。它特别解释了为什么对于 CPPI,BS 模型的期望值高于 SV 模型(见表 1)。B. 期望值、方差、偏度和峰度的比较。处理期权时,均值-方差方法并不总是合理的,因为收益不是线性的。因此,我们同时检查前四个矩。如果我们比较前两个矩(均值-方差分析),请注意,对于 m 高,CPPI 投资组合的期望值和方差大于 OBPI 投资组合的期望值和方差,因此在均值-方差标准方面不存在优势。对于金融市场的任何参数化,至少存在一个 m 值,使得 OBPI 策略在均值-方差意义上优于 CPPI 策略。
1 数据集信息 [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 使用均值、方差和三阶矩 Σ nt 的 1-back、2-back、3-back 任务的分类准确率 . . . . . . . . . . . . . . . . . . . . . . 42 3 使用 Σ n (t) 的均值、方差和三阶矩,对数据集 1 的 1-back、2-back、3-back 任务与 RELAX 任务之间的分类准确度 43 4 使用均值和方差以及不同的机器学习算法,对数据集 2 的不同 n-back 任务之间的分类准确度。 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
转录组关联研究 (TWAS) 已广泛用于整合转录组和遗传数据来研究复杂的人类疾病。在缺少转录组数据的测试数据集中,传统的两阶段 TWAS 方法首先通过创建加权和来估算基因表达,该加权和将 SNP 与其相应的顺式 eQTL 对参考转录组的影响聚合在一起。然后,传统 TWAS 方法采用线性回归模型来评估估算基因表达与测试表型之间的关联,从而假设顺式 eQTL SNP 对测试表型的影响是 eQTL 对参考转录组的估计影响的线性函数。为了提高 TWAS 对这一假设的稳健性,我们提出了一种新颖的方差分量 TWAS 程序 (VC-TWAS),该程序假设顺式 eQTL SNP 对表型的影响是随机的(方差与相应的参考顺式 eQTL 效应成比例)而不是固定的。 VC-TWAS 适用于连续和二分表型,以及个体层面和汇总层面的 GWAS 数据。使用模拟数据,我们表明 VC-TWAS 比基于两阶段负担检验的传统 TWAS 方法更强大,尤其是当 eQTL 遗传效应对测试表型不再是其 eQTL 遗传效应对参考转录组的线性函数时。我们进一步将 VC-TWAS 应用于个体层面(N = ~3.4K)和汇总层面(N = ~54K)的 GWAS 数据来研究阿尔茨海默病 (AD)。利用个体层面的数据,我们检测到了 13 个显著的风险基因,包括 6 个已知的 GWAS 风险基因,例如 TOMM40,而传统 TWAS 方法却遗漏了这些基因。利用汇总级数据,我们检测到 57 个仅考虑顺式 SNP 的显著风险基因和 71 个同时考虑顺式和反式 SNP 的显著风险基因,这也通过个体级 GWAS 数据验证了我们的发现。我们的 VC-TWAS 方法已在 TIGAR 工具中实现,供公众使用。
摘要 在经历了长期的收入水平分化之后,新的证据表明,较贫穷的国家正在向较富裕经济体的收入水平趋同。在以人力资本为增长引擎的模型中,我们的研究结果表明,人力资本是解释物质资本积累和就业率的一个非常重要的变量,其对人均GDP的影响从1960年到2015年一直在增加。我们还表明,人力资本的总方差可以解释各国人均收入差异的相当一部分。虽然残差方差在样本中保持相对恒定,但人均GDP方差和人力资本总方差表现出相似的动态变化。根据我们的研究结果,人力资本总方差解释了1960年至2000年间人均GDP方差增加的88%,以及2000年至2015年间人均GDP方差下降的56%。
量子神经网络 (QNN) 使用具有数据相关输入的参数化量子电路,并通过评估期望值来生成输出。计算这些期望值需要重复进行电路评估,因此即使在无误差的量子计算机上也会引入基本的有限采样噪声。我们通过引入方差正则化来减少这种噪声,这是一种在量子模型训练期间减少期望值方差的技术。如果 QNN 构建正确,则此技术不需要额外的电路评估。我们的实证结果表明,方差的降低加快了训练速度,降低了输出噪声,并减少了梯度电路的必要评估次数。该正则化方法以多个函数的回归和水的势能表面为基准。我们表明,在我们的示例中,它平均将方差降低了一个数量级,并导致 QNN 的噪声水平显着降低。我们最后在真实的量子设备上演示了 QNN 训练,并评估了错误缓解的影响。这里,优化是可行的,仅仅是由于方差的减少导致梯度评估中所需的拍摄次数减少。