在计算神经科学中,人们对开发机器学习算法的兴趣越来越高,这些算法利用脑成像数据来为个体提供“脑时代”的估计。重要的是,由于不良健康状况,大脑年龄和年龄年龄之间的不一致可以捕获加速老化,因此可以反映出增加对神经系统疾病或认知障碍的脆弱性。然而,由于大多数现有的脑年龄预测算法缺乏透明度和方法上的理由,因此阻碍了大脑年龄对临床决策支持的广泛采用。在本文中,我们利用协方差神经网络(VNN)提出了使用皮质厚度特征为脑年龄预测的解释驱动和解剖学上的解释框架。Specifically, our brain age prediction framework extends beyond the coarse metric of brain age gap in Alzheimer's disease (AD) and we make two important observations: (i) VNNs can assign anatomical interpretability to elevated brain age gap in AD by identifying contributing brain regions, (ii) the interpretability offered by VNNs is contingent on their ability to exploit specific eigenvectors of the anatomical协方差矩阵。在一起,这些观察结果促进了对脑时代预测任务的可解释和解剖学上的观点。
主要关键词