Loading...
机构名称:
¥ 1.0

识别缺失的药物靶标对于治疗的开发和药物副作用的分子阐明至关重要。通过利用药物和蛋白质靶标的分子、生物学或药理学特征可以预测药物靶标。然而,开发用于预测药物靶标的综合且可解释的机器学习模型仍然是一项具有挑战性的任务。我们提出了 Inception,这是一种用于预测药物靶标的综合且可解释的矩阵完成模型。Inception 是一个自我表达模型,它学习两个相似性矩阵:一个用于药物,另一个用于蛋白质靶标。这些学习到的相似性矩阵是我们模型可解释性的关键:它们可以解释如何用化学、生物学和药理学相似性的线性组合来解释预测的药物-靶标相互作用。我们开发了一种具有有效闭式解的新型目标函数。为了证明 Inception 在恢复缺失的药物-靶标相互作用 (DTI) 方面的能力,我们进行了交叉验证实验,严格控制数据不平衡、药物之间的化学相似性和靶标之间的序列相似性。我们还使用模拟前瞻性方法评估了模型的性能。使用 DrugBank 数据库 2011 年快照中的 DTI 训练我们的模型后,我们测试是否可以预测 DrugBank 2020 年快照中的 DTI。在所有情况下,Inception 的表现都优于两种最先进的药物靶标预测模型。这表明 Inception 可用于预测缺失的药物靶标相互作用,同时提供可解释的预测。

使用自我解释的药物靶标预测......

使用自我解释的药物靶标预测......PDF文件第1页

使用自我解释的药物靶标预测......PDF文件第2页

使用自我解释的药物靶标预测......PDF文件第3页

使用自我解释的药物靶标预测......PDF文件第4页

使用自我解释的药物靶标预测......PDF文件第5页

相关文件推荐