摘要 BrainAge(根据神经影像数据预测受试者的表观年龄)是大脑衰老的重要生物标志物。BrainAge 与真实年龄的偏差与精神和神经疾病有关,并且已被证明可有效预测轻度认知障碍 (MCI) 转化为痴呆症。传统上,3D 卷积神经网络及其变体用于预测大脑年龄。然而,这些网络比 2D 网络具有更多参数并且训练时间更长。在这里,我们提出了一种基于 2D 切片的循环神经网络模型,该模型以有序的矢状切片序列作为输入来预测大脑年龄。该模型由两部分组成:一个 2D 卷积神经网络 (CNN),它对切片中的相关特征进行编码,以及一个循环神经网络 (RNN),它学习切片之间的关系。我们将我们的方法与其他最近提出的方法进行了比较,包括 3D 深度卷积回归网络、信息论模型和特征包 (BoF) 模型(例如 BagNet)——其中分类基于局部特征的出现,而不考虑它们的全局空间顺序。在我们的实验中,我们提出的模型的表现与当前最先进的模型相当甚至更好,参数数量几乎减少了一半,收敛时间也更短。关键词:深度学习、循环神经网络、卷积神经网络、大脑年龄、结构磁共振成像
主要关键词