摘要:Hippo 信号通路最初于 1995 年在果蝇中发现,它通过抑制增殖和促进细胞凋亡,在器官大小控制和肿瘤抑制中发挥关键作用。大型肿瘤抑制因子 1 和 2 (LATS1/2) 直接磷酸化 Yki 直系同源物 YAP(yes 相关蛋白)及其旁系同源物 TAZ(也称为 WW 结构域转录调节因子 1 [WWTR1]),从而抑制它们的核定位和与转录辅激活因子 TEAD1-4 的配对。许多研究实验室的认真努力已经确定了错误调节的 Hippo 信号在肿瘤发生、上皮间质转化 (EMT)、致癌干细胞以及最近的耐药性发展中的作用。Hippo 信号成分是致癌适应的核心,它促进了许多癌症对靶向治疗药物的耐药性发展,包括 KRAS 和 EGFR 突变体。 2001年,美国食品药品监督管理局(US FDA)首次批准伊马替尼酪氨酸激酶抑制剂,为美国FDA和国家药品监督管理局(NMPA)批准近100种小分子抗癌药物铺平了道路。然而,低反应率和耐药性的发展对改善癌症患者的无进展生存期(PFS)和总生存期(OS)构成了重大障碍。越来越多的证据使科学家和临床医生能够制定针对癌细胞的治疗方法,并通过持续监测肿瘤演变和致癌适应来控制耐药性的发展。在这篇综述中,我们重点介绍了Hippo信号与其他致癌驱动因素相互作用的新兴方面,以及如何将这些信息转化为联合疗法,以针对多种侵袭性肿瘤和耐药性的发展。
由于旁系同源、复杂的单倍型结构或串联重复,人类基因组的很大一部分难以用短读 DNA 测序技术进行检测。长读测序技术(例如 Oxford Nanopore 的 MinION)能够直接测量复杂的位点,而不会引入短读方法固有的许多偏差,尽管它们的通量相对较低。这一限制促使人们最近努力开发无扩增策略来定位和富集感兴趣的位点,以便随后用长读进行测序。在这里,我们介绍了 CaBagE,这是一种高效且有用的靶标富集方法,可用于对大型、结构复杂的靶标进行测序。CaBagE 方法利用 Cas9 与其 DNA 靶标的稳定结合来保护所需片段不被核酸外切酶消化。然后使用 Oxford Nanopore 的 MinION 长读测序技术对富集的 DNA 片段进行测序。使用健康供体 DNA 对长度为 4-20kb 的五个基因组靶标进行测试时,使用 CaBagE 进行富集可获得 116X 覆盖率(范围为 39-416)的靶标位点中位数。四种癌症基因靶标在单个反应中富集并在单个 MinION 流动槽中进行多路复用。我们进一步证明了 CaBagE 在两名具有 C9orf72 短串联重复扩增的 ALS 患者中的效用,以产生与每个个体的重复引发 PCR 得出的基因型相称的基因型估计值。使用 CaBagE,可以在测序之前对给定样本中的靶标 DNA 进行物理富集。此功能允许跨测序平台进行适应性,并可能用作测序以外应用的富集策略。CaBagE 是一种快速富集方法,可以阐明人类疾病背后的“隐藏基因组”区域。
2 霍华德休斯医学研究所,波士顿,MA 02115 通信:ram@genetics.med.harvard.edu (RV);perrimon@genetics.med.harvard.edu (NP) 摘要 CRISPR 筛选可实现系统的、可扩展的基因型到表型映射。我们之前开发了一种用于果蝇和蚊子细胞系的汇集 CRISPR 筛选方法,使用质粒转染和位点特异性整合来引入单向导 (sgRNA) 文库,然后进行 PCR 和整合的 sgRNA 测序。虽然有效,但该方法依赖于早期组成型 Cas9 活性,这可能会导致基因组编辑和 PCR 检测到的 sgRNA 之间存在差异,从而降低筛选准确性。为了解决这个问题,我们引入了一种新方法来共转染表达抗 CRISPR 蛋白 AcrIIa4 的质粒以抑制早期 sgRNA 表达期间的 Cas9 活性,我们称之为“IntAC”(与抗 CRISPR 整合酶)。 IntAC 使我们能够构建一种由高强度 dU6:3 启动子驱动的新型 CRISPR 筛选方法。这个新库显著提高了整个基因组中适应性基因的精确度,在 5% 的误差范围内检索了 90-95% 的必需基因组,使我们能够生成迄今为止为果蝇组装的最全面的细胞适应性基因列表。我们的分析确定,IntAC 方法允许的升高的 sgRNA 水平推动了大部分改进。果蝇适应性基因与人类适应性基因表现出很强的相关性,并强调了旁系同源物对基因必需性的影响。我们进一步证明,IntAC 与靶向 sgRNA 子库相结合,能够在溶质超载下精确地正向选择转运蛋白。IntAC 是对现有果蝇 CRISPR 筛选方法的直接增强,显著提高了准确性,并且可能广泛应用于其他细胞类型(包括蚊子、鳞翅目、蜱虫和哺乳动物细胞)中的无病毒 CRISPR 筛选。
接触依赖性生长抑制 (CDI) 是一种由 CdiA 效应蛋白介导的广泛存在的细菌间竞争形式。CdiA 存在于抑制剂细胞表面,并在接触时将其有毒的 C 末端区域 (CdiA-CT) 传递到邻近的细菌中。抑制剂细胞还会产生 CdiI 免疫蛋白,这些蛋白可中和 CdiA-CT 毒素以防止自我抑制。在这里,我们描述了一组不同的 CDI 离子载体毒素,它们会消散目标细菌中的跨膜电位。这些 CdiA-CT 毒素由基于 AlphaFold2 建模的两个不同域组成。C 末端离子载体域都预测会形成能够跨越细胞膜的五螺旋束。N 末端“进入”域的结构各不相同,似乎劫持了不同的整合膜蛋白,以促进毒素组装到脂质双层中。大肠杆菌分离株部署的 CDI 离子载体根据其进入域结构分为六大类。比较序列分析鉴定出第 1 组和第 3 组(AcrB)、第 2 组(SecY)和第 4 组(YciB)的离子载体毒素受体蛋白。利用正向遗传学方法,我们鉴定出第 5 组和第 6 组离子载体的新受体。第 5 组利用由 puuP 和 plaP 编码的同源腐胺输入蛋白,第 6 组毒素识别由旁系同源 dtpA 和 dtpB 基因编码的二肽/三肽转运蛋白。最后,我们发现离子载体结构域表现出显著的组内序列变异,特别是在预测与 CdiI 相互作用的位置。因此,相应的免疫蛋白也具有高度多态性,通常与同一组的成员仅共享约 30% 的序列同一性。竞争实验证实,免疫蛋白对其同源离子载体具有特异性,无法抵御来自同一组的其他毒素。这种蛋白质相互作用网络的特异性为大肠杆菌分离株之间的自体/非自体识别提供了一种机制。
摘要:由于表面暴露的赖氨酸的固有反应性低且在整个蛋白质组中普遍存在,因此对其进行靶向共价修饰具有挑战性。优化可逆结合抑制剂 ( k inact ) 共价键形成速率的策略通常涉及提高亲电试剂的反应性,这会增加离靶修饰的风险。在这里,我们采用了一种替代方法来提高赖氨酸靶向共价 Hsp90 抑制剂的 k inact ,而不依赖于可逆结合亲电性 ( K i ) 或固有亲电性。从非共价配体开始,我们附加了一个手性、构象受限的连接体,它使芳基磺酰氟与 Hsp90 表面的 Lys58 快速且对映选择性地发生反应。共价和非共价配体/Hsp90 复合物的生化实验和高分辨率晶体结构提供了有关配体构象在观察到的对映选择性中的作用的机制见解。最后,我们展示了细胞 Hsp90 的选择性共价靶向,尽管共价配体/Hsp90 复合物同时降解,但仍会导致热休克反应延长。我们的工作突出了设计配体构象约束的潜力,可以大大加速蛋白质靶标表面远端、亲核性较差的赖氨酸的共价修饰。■ 简介共价抑制剂作为药物、细胞生物学工具和化学蛋白质组学探针具有广泛的用途。不可逆的共价修饰导致药物-靶标停留时间与靶蛋白的寿命相匹配,通常与药物清除率无关。 1、2 此外,共价抑制剂可以通过与配体结合位点内或附近的非保守亲核氨基酸反应来区分密切相关的旁系同源物。3 − 8 目标亲核试剂的选择性修饰由两步反应机制决定,其中配体的可逆结合先于共价修饰。可逆结合亲和力和最初形成的非共价复合物内共价键形成的速率 ( k inact ) 都会影响共价抑制剂的效力。9 增加 k inact 的一个明显方法是增强亲电试剂的固有反应性。这种方法的缺点是它增加了发生不良的脱靶反应的可能性。因此,共价抑制剂的优化主要依赖于最大化非共价识别元素的可逆结合亲和力。 10,11 迄今为止,快速作用、高选择性共价配体的设计主要集中在半胱氨酸上,部分原因是其高内在反应性允许使用相对不活泼的亲电试剂(例如丙烯酰胺)。12 − 14 然而,半胱氨酸是蛋白质组中最不常见的氨基酸之一,许多配体结合位点缺乏近端半胱氨酸。