对于现代动物而言,在正确的时间在正确的细胞中部署纤毛对于发育和生理至关重要。两种转录因子 RFX 和 FoxJ1 可协调动物的纤毛发生 7–9 ,但在许多其他有纤毛的真核生物的基因组中却不存在,这引发了一个问题:动物纤毛发生的调控是如何进化的 10,11 。通过将动物的基因组与其现存最亲近的亲属领鞭毛虫的基因组进行比较,我们发现它们最后的共同祖先的基因组编码了至少三个 RFX 旁系同源物和一个 FoxJ1 同源物。模型领鞭毛虫 Salpingoeca rosetta 中 RFX 同源物 cRFXa 的破坏导致细胞增殖延迟和纤毛发生异常,以新生纤毛的崩溃和吸收为标志。在 cRFXa 突变体中,纤毛发生基因和 foxJ1 显著下调。此外,S. rosetta 纤毛基因的启动子富含与体外 cRFXa 蛋白结合的 DNA 基序相匹配的 DNA 基序。这些发现表明,祖先 cRFXa 同源物协调了动物和领鞭毛虫祖先的纤毛发生,并且选择性
基于基因型的癌症治疗,即用高选择性分子靶向致癌突变改变的信号通路,对癌症治疗大有裨益,因为这些靶向药物通常可导致显著的临床反应并且毒性降低。但并非所有癌症驱动突变都可以用药治疗。例如,肿瘤抑制基因的功能丧失改变就不是直接靶向的。影响 SWI/SNF 染色质重塑/肿瘤抑制基因复合物各种亚基的突变,例如编码两种互斥的 ATPase 之一的 SMARCA4,存在于约 25% 的人类癌症中。SMARCA4 的旁系同源物 SMARCA2 很少发生突变,但在肿瘤中常常发生表观遗传沉默。SMARCA4/2 同时丧失是卵巢癌和肺癌亚组的特征,与非常差的预后有关。除了肿瘤抑制基因缺失之外,一些激活性致癌突变(如 KRAS 中的突变)已被证明很难靶向。尽管 RAS 抑制剂 sotorasib 最近获批用于治疗反应率低于 50% 的 KRAS G12C 肺癌,但它对其他 KRAS 突变无效。因此,需要替代治疗方案来靶向这些仍然难以治疗的癌症。
摘要:本研究探讨了淀粉样蛋白前体样蛋白2。该蛋白质构成了阿尔茨海默氏病神经病理学的关键成分。我们利用与结构生物信息学方法配对的下一代测序中的数据,以仔细检查有关E2域结构完整性的突变和功能域。阿尔茨海默氏病,淀粉样蛋白前体蛋白(APP)家族在生物学和疾病中的重要性得到了广泛认可。在本研究中确定了APLP2自主折叠E2结构域的晶体结构,并将其与其旁系同源物应用程序和APLP2进行了比较,后者总体上显示出强大的结构相似性。通过Python Molecular图形咨询了有关蛋白质组学3D样品5TPT的晶体学信息,以显示B-因子计算和极性接触映射。和pdbsum来评估模型的质量。在此方面,通过分析蛋白质的分类来获得功能注释,以了解APLP2在神经退行性过程中的作用。关键字:淀粉样蛋白前体样蛋白2(APLP2); E2域;阿尔茨海默氏病; B因子分析;冷冻分析;模型评估;蛋白质签名数据库;结构分析简介
旁系同源物 CUL 4 A 和 CUL 4 B 组装 cullin-RING E 3 泛素连接酶 (CRL) 复合物,调节多种染色质相关的细胞功能。尽管它们结构相似,但我们发现 CUL 4 B 独特的 N 端延伸在有丝分裂期间被大量磷酸化,而磷酸化模式在导致 X 连锁智力残疾 (XLID) 的 CUL 4 BP 50 L 突变中受到干扰。表型表征和突变分析表明,CUL 4 B 磷酸化是有效进行有丝分裂、控制纺锤体定位和皮质张力所必需的。虽然 CUL 4 B 磷酸化触发染色质排斥,但它促进与肌动蛋白调节剂和两个以前未被认识的 CUL 4 B 特异性底物受体 (DCAF) LIS 1 和 WDR 1 的结合。事实上,共免疫沉淀实验和生化分析表明 LIS 1 和 WDR 1 与 DDB 1 相互作用,并且 CUL 4 B 的磷酸化 N 端结构域增强了它们的结合。最后,人类前脑类器官模型表明 CUL 4 B 是形成与前脑分化开始相关的稳定脑室结构所必需的。总之,我们的研究发现了以前未被发现的与有丝分裂和大脑发育相关的 DCAF,它们通过磷酸化依赖机制特异性结合 CUL 4 B,但不结合 CUL 4 BP 50 L 患者突变体。
摘要:转录因子 MEF2C 在神经元、心脏、骨骼和软骨的分子过程以及颅面发育中至关重要。MEF2C 与人类疾病 MRD20 有关,该疾病患者的神经元和颅面发育异常。通过表型分析,对斑马鱼 mef2ca;mef2cb 双突变体进行了颅面和行为发育异常分析。采用定量 PCR 检测突变幼虫中神经元标记基因的表达水平。通过 6 dpf 幼虫的游泳活动分析了运动行为。我们发现 mef2ca; mef2cb 双突变体在早期发育过程中表现出几种异常表型,包括已经在携带每个旁系同源物突变的斑马鱼中描述的表型,以及 (i) 严重的颅面表型(包括软骨和真皮骨结构)、(ii) 由于心脏水肿破坏而导致的发育停滞和 (iii) 行为的明显改变。我们证明在斑马鱼 mef2ca ; mef2cb 双突变体中观察到的缺陷与之前在 MEF2C 缺陷小鼠和 MRD20 患者中描述的缺陷相似,证实了这些突变系可作为 MRD20 疾病研究、新治疗靶点识别和可能的挽救策略筛选的模型。
抽象最近的工作与剪接体组件U2AF35的两个锌指(ZnF)的点突变与恶性转化有关。然而,令人惊讶的是,对U2AF35 ZNF域的功能知之甚少。在这里,我们分析了哺乳动物U2AF35的ZNF域及其旁系同源物U2AF26的关键功能。两个ZNF都是剪接调节所必需的,而仅ZNF2控制蛋白质稳定性,并有助于与U2AF65的相互作用。这些特征在缺乏ZnF2的U2AF26的自然存在的剪接变体中得到了证实,该变体在激活原代小鼠T细胞时强烈诱导并局部位于细胞质中。在模型T细胞系中使用Ribo-Seq我们为U2AF26在激活基因表达中的细胞质步骤中的作用提供了证据,尤其是翻译。一致地,MS2绑定测定法表明,当定位于模型mRNA的5 rtr时,细胞质U2AF26/35增加了翻译。该法规部分取决于Znf1,因此在核心剪接因子,ZNF域和翻译调节之间提供了联系。总的来说,我们的工作揭示了U2AF26/35及其ZNF领域的意外功能,从而有助于更好地理解其在哺乳动物细胞中的作用和调节。
摘要 颜色通常被用作警示信号,捕食者的学习预计会导致种群内形成单一的颜色模式。然而,在许多令人费解的情况下,警示信号也是多态性的。木虎蛾(Arctia plantaginis)表现出与难吃相关的鲜艳后翅颜色,而雄性具有离散的颜色形态,其频率因地而异。在芬兰,可以发现白色和黄色两种形态,这些颜色形态在行为和生活史特征上也有所不同。在这里,我们表明雄性颜色与黄色家族基因的额外拷贝有关,该基因仅存在于白色形态中。这种白色特异性重复,我们将其命名为 valkea,在翅膀发育过程中高度上调。针对 valkea 的 CRISPR 导致 valkea 及其旁系同源物 yellow-e 的编辑,并导致黄色翅膀的产生。我们还描述了造成黄色、白色和黑色的色素,表明黄色部分由褐黑素产生,而黑色则由多巴胺衍生的真黑素产生。我们的研究结果补充了越来越多的研究,这些研究涉及复杂且看似矛盾的多态性的遗传结构,以及基因重复和结构变异在适应性进化中的作用。
细胞靶标结合技术能够量化细胞内药物结合;然而,同时评估药物相关表型已被证明具有挑战性。在这里,我们通过突变体的积累将细胞靶标结合作为一个平台,可以使用条件稳定的药物生物传感器同时评估药物-靶标相互作用和表型反应。我们观察到,药物反应性蛋白质型在已知药物靶标的报道突变体中普遍存在。兼容突变体似乎遵循结构和生物物理逻辑,允许生物传感器池的蛋白质内和旁系同源扩展。然后,我们应用我们的方法将靶标参与与 MutT 同源物 1 (MTH1) 抑制剂的不同细胞活动分开,剖析 Nudix 水解酶 15 (NUDT15) 与 R139C 药物遗传学变体相关的硫嘌呤代谢,并分析聚(ADP-核糖)聚合酶 1/2 (PARP1/2) 结合和 PARP 抑制剂 (PARPi) 捕获 DNA 的动态。此外,PARP1 衍生的生物传感器促进了 PARP1 结合剂的高通量筛选,以及活体动物中 PARPi 结合的多模式离体分析和非侵入性跟踪。这种方法可以通过连接药物结合事件及其生物学后果来促进对药物-靶标参与的整体评估。
细菌的旁系敏感性 (CS) 是指抗生素抗性突变导致对另一种抗生素的敏感性,在治疗抗生素抗性病原体感染方面具有潜在的治疗用途。大肠杆菌中,先前已证明对庆大霉素 (GEN) 的 CS 存在于环丙沙星 (CIP) 抗性菌株中。为了研究潜在的突变,大肠杆菌 K-12 亚型 MG1655 种群进化为对 CIP 具有抗性,并测试了它们在 1 mg/L GEN 中的存活率。对进化菌株的 marR、acrR、soxR、gyrA 和 parC 基因进行测序,以检查每个终点种群的三个分离株中是否存在 CIP 抗性突变。为了进一步阐明哪些基因可能与对 GEN 的 CS 有关,构建了具有 marR、acrR、gyrA 和 parC 突变的菌株。在进化为对 CIP 具有抗性的 6 个种群中的 5/6 个中观察到了对 GEN 的 CS,但在构建的菌株中没有观察到。这表明 CIP 抗性可能使 CS 向 GEN 转变,但本研究未发现导致该转变的突变。来自同一群体的分离株之间的 CS 也存在很大差异。因此,本研究结果并未揭示 CIP 抗性大肠杆菌中 CS 向 GEN 转变的潜在机制,并引发了 CS 是否是一种可行的治疗策略的疑问。
基因组资源联盟 (Alliance) 是一个可扩展的知识库联盟,专注于深入研究的模式生物的遗传学和基因组学。联盟由独立的知识中心组成,与其研究社区和集中式软件基础设施有着密切的联系,我们将在此讨论。联盟中目前代表的模式生物是芽殖酵母、秀丽隐杆线虫、果蝇、斑马鱼、青蛙、实验室小鼠、实验室大鼠和基因本体论联盟。该项目正处于快速发展阶段,旨在协调知识、存储知识、分析知识并通过网络门户、直接下载和应用程序编程接口 (API) 将其呈现给社区。在这里,我们关注过去 2 年的发展。具体来说,我们添加并增强了用于浏览基因组 (JBrowse)、下载序列、挖掘复杂数据 (AllianceMine)、可视化途径、文献全文搜索 (Textpresso) 和序列相似性搜索 (SequenceServer) 的工具。我们增强了现有的交互式数据表,并添加了一个交互式旁系同源物表,以补充我们对直系同源物的表示。为了支持单个模型生物群落,我们实施了物种特定的“登陆页面”,并将很快添加疾病特定的门户;此外,我们还支持在 Discourse 软件中实现的公共社区论坛。我们描述了我们在支持管理的中央持久数据库方面的进展、支持协调的数据建模,以及在实现集成人工智能和机器学习 (AI/ML) 的最先进的文献管理系统方面的进展。