作者注:学员 Bridgham、Lambert、Moe 和 Morin 是美国军事学院四年级学生,分别来自系统工程系和数学科学系。系统工程系教授 Timothy Elkins 博士是该小组的顾问。摘要:可靠定位、导航和授时 (APNT) 是利用全球定位系统 (GPS) 进行作战使用的系统的高级储备。如果 GPS 性能下降或不准确,APNT 可提供备份以维持作战和准备状态。有关 APNT 的准确信息(重点是分配时间)是掌控战场和取得战术和作战成功的关键,因为如果时间不同步,通信、智能武器和安全系统可能会无法运行。研究小组着手寻找一种替代技术或系统,为军用旋翼飞机提供 APNT(重点是时间)。通过我们的分析,团队确定了具体的高级功能和目标,筛选了可能的解决方案,并权衡了最终的系统以确定最佳匹配。总体而言,铱星卫星得分最高,是最佳考虑的解决方案。关键词:GPS、APNT、计时、IMU、航空、系统决策过程
作者注:学员 Bridgham、Lambert、Moe 和 Morin 是美国军事学院四年级学生,分别来自系统工程系和数学科学系。系统工程系教授 Timothy Elkins 博士是该小组的顾问。摘要:可靠定位、导航和授时 (APNT) 是利用全球定位系统 (GPS) 进行作战使用的系统的高级储备。如果 GPS 性能下降或不准确,APNT 可提供备份以维持作战和准备状态。有关 APNT 的准确信息(重点是分配时间)是掌控战场和取得战术和作战成功的关键,因为如果时间不同步,通信、智能武器和安全系统可能会无法运行。研究小组着手寻找一种替代技术或系统,为军用旋翼飞机提供 APNT(重点是时间)。通过我们的分析,团队确定了具体的高级功能和目标,筛选了可能的解决方案,并权衡了最终的系统以确定最佳匹配。总体而言,铱星卫星得分最高,是经过深思熟虑的最佳解决方案。关键词:GPS、APNT、计时、IMU、航空、系统决策过程
足智多谋、反应敏捷的工程师,拥有 12 年以上军用和商用飞行器应用(载人和无人)推进和动力系统方面的丰富工程经验。经验包括:研究、解决方案空间优化、飞行器概念、初步和详细设计、低 TRL/MRL 发动机开发、发动机到机身集成、未安装和已安装发动机(循环)性能分析、发动机开发和性能测试、飞行测试支持和数据分析、需求和工程文档、产品采购和供应商管理、适航性、认证/资质流程、维护、维修和大修 (MRO) 以及生命周期支持(维护)。之前还拥有 10 年担任军用和商用固定翼和旋翼飞机及飞行操作技术员的经验。20 多年的航空/航天背景使我们具备了极佳的实践和分析技能,对燃气涡轮发动机、重油/柴油和汽油往复式发动机、动力系统、驱动器、配件以及未来、现代和传统飞行器和产品的相关子系统有着全面的了解。
美国陆军将短程防空 (SHORAD) 定义为专用防空炮兵 (ADA) 和非专用防空能力,通过摧毁、压制或威慑低空空中威胁,实现机动和机动,以保卫关键的固定和半固定资产和机动部队。SHORAD 部队历史上嵌入陆军师,为他们提供建制能力,以保护其关键资产免受固定翼和旋翼飞机的攻击。然而,在 21 世纪初,这些 ADA 部队被从陆军剥离,以满足当时被认为更为关键的部队需求。决策者接受了威胁飞机可能对地面部队和其他关键资产构成越来越大的风险,因为他们相信美国空军可以保持空中优势。然而自 2005 年以来,针对美国地面部队的空中和导弹平台显著增加。国家和非国家行为体对无人机系统的使用呈指数级增长,在俄乌冲突中双方都成功使用了无人机系统。固定翼飞机、攻击直升机和巡航导弹也继续对美国地面部队构成重大威胁,火箭、火炮和迫击炮 (RAM) 也是如此。
作者注:学员 Bridgham、Lambert、Moe 和 Morin 是美国军事学院四年级学生,分别来自系统工程系和数学科学系。系统工程系教授 Timothy Elkins 博士是该小组的顾问。摘要:可靠定位、导航和授时 (APNT) 是利用全球定位系统 (GPS) 进行作战使用的系统的高级储备。如果 GPS 性能下降或不准确,APNT 可提供备份以维持作战和准备状态。有关 APNT 的准确信息(重点是分配时间)是掌控战场和取得战术和作战成功的关键,因为如果时间不同步,通信、智能武器和安全系统可能会无法运行。研究小组着手寻找一种替代技术或系统,为军用旋翼飞机提供 APNT(重点是时间)。通过我们的分析,团队确定了具体的高级功能和目标,筛选了可能的解决方案,并权衡了最终的系统以确定最佳匹配。总体而言,铱星卫星得分最高,是最佳考虑的解决方案。关键词:GPS、APNT、计时、IMU、航空、系统决策过程
作者注:学员 Bridgham、Lambert、Moe 和 Morin 是美国军事学院四年级学生,分别来自系统工程系和数学科学系。系统工程系教授 Timothy Elkins 博士是该小组的顾问。摘要:可靠定位、导航和授时 (APNT) 是利用全球定位系统 (GPS) 进行作战使用的系统的高级储备。如果 GPS 性能下降或不准确,APNT 可提供备份以维持作战和准备状态。有关 APNT 的准确信息(重点是分配时间)是掌控战场和取得战术和作战成功的关键,因为如果时间不同步,通信、智能武器和安全系统可能会无法运行。研究小组着手寻找一种替代技术或系统,为军用旋翼飞机提供 APNT(重点是时间)。通过我们的分析,团队确定了具体的高级功能和目标,筛选了可能的解决方案,并权衡了最终的系统以确定最佳匹配。总体而言,铱星卫星得分最高,是最佳考虑的解决方案。关键词:GPS、APNT、计时、IMU、航空、系统决策过程
作者注:学员 Bridgham、Lambert、Moe 和 Morin 是美国军事学院四年级学生,分别来自系统工程系和数学科学系。系统工程系教授 Timothy Elkins 博士是该小组的顾问。摘要:可靠定位、导航和授时 (APNT) 是利用全球定位系统 (GPS) 进行作战使用的系统的高级储备。如果 GPS 性能下降或不准确,APNT 可提供备份以维持作战和准备状态。有关 APNT 的准确信息(重点是分配时间)是掌控战场和取得战术和作战成功的关键,因为如果时间不同步,通信、智能武器和安全系统可能会无法运行。研究小组着手寻找一种替代技术或系统,为军用旋翼飞机提供 APNT(重点是时间)。通过我们的分析,团队确定了具体的高级功能和目标,筛选了可能的解决方案,并权衡了最终的系统以确定最佳匹配。总体而言,铱星卫星得分最高,是最佳考虑的解决方案。关键词:GPS、APNT、计时、IMU、航空、系统决策过程
第 1 部分 执行摘要 简介:根据对 2008 年 OIG 航空安全审计的回应中同意的建议 3,美国森林服务局特殊任务适航保证指南的制定目的是根据每项特殊任务建立先决条件标准、评估和监控,以验证飞机的用途并确保飞机具有基于损伤容限分析的适当的维护和检查程序,从而确保飞机在用于该任务时适航。适航标准适航性 1 - 特定飞机根据批准的用途 [特殊任务] 和限制安全实现、维持和终止飞行的特性。1. 为满足要求,美国森林服务局将寻求采购和维持 FAA 认证的固定翼和旋翼飞机,即使此类飞机的预期用途与原始设计不一致或不存在等效的民用操作。2. 美国森林服务局将寻求确保其飞机在切实可行的范围内遵守联邦航空法规规定的民用适航标准。商用飞机必须遵守 14 CFR 要求,公法指定 FAA 为美国国家空域系统的监管者和 14 CFR 要求的执行者。但是,美国森林服务局拥有、运营和承包的飞机执行“公共飞机运营”,美国森林服务局是负责
引言 2-1 2.1 固定翼飞机应用的燃气涡轮发动机模拟 2-1 2.1.1 初步设计概要 2-3 2.1.1.1 燃气涡轮概念设计流程 2-4 2.1.1.2 任务发动机或循环选择 2-7 2.1.1.3 控制系统概念定义/评估 2-10 2.1.1.4 燃气涡轮循环设计方法 – 数值优化 2-13 2.1.2 设计和验证概要 2-16 2.1.2.1 技术风险评估 2-16 2.1.2.2 硬件在环 2-22 2.1.2.3 飞机模拟 2-25 2.1.2.4 安装对整台发动机的影响 2-29 2.1.2.5 统计分析 2-32 2.1.3 系统设计和开发概要 2-36 2.1.3.1 性能 2-37 2.1.3.2 可操作性 2-55 2.1.3.3 寿命评估和耐久性 2-60 2.1.3.4 恶劣天气 2-65 2.1.3.5 控制 2-67 2.1.4 认证后和在役支持概要 2-72 2.1.4.1 用户环境 2-73 2.1.4.2 发动机模型的需求和用户要求 2-74 2.1.4.3 发动机健康监测和故障诊断 2-75 2.1.5 固定翼应用的参考资料 2-91 2.2 旋翼飞机应用的燃气涡轮发动机模拟 2-93 2.2.1 历史 2-93
引言 2-1 2.1 固定翼飞机应用的燃气涡轮发动机模拟 2-1 2.1.1 初步设计概要 2-3 2.1.1.1 燃气涡轮概念设计流程 2-4 2.1.1.2 任务发动机或循环选择 2-7 2.1.1.3 控制系统概念定义/评估 2-10 2.1.1.4 燃气涡轮循环设计方法 – 数值优化 2-13 2.1.2 设计和验证概要 2-16 2.1.2.1 技术风险评估 2-16 2.1.2.2 硬件在环 2-22 2.1.2.3 飞机模拟 2-25 2.1.2.4 安装对整台发动机的影响 2-29 2.1.2.5 统计分析 2-32 2.1.3 系统设计和开发概要 2-36 2.1.3.1 性能 2-37 2.1.3.2 可操作性 2-55 2.1.3.3 寿命评估和耐久性 2-60 2.1.3.4 恶劣天气 2-65 2.1.3.5 控制 2-67 2.1.4 认证后和在役支持概要 2-72 2.1.4.1 用户环境 2-73 2.1.4.2 发动机模型的需求和用户要求 2-74 2.1.4.3 发动机健康监测和故障诊断 2-75 2.1.5 固定翼应用的参考资料 2-91 2.2 旋翼飞机应用的燃气涡轮发动机模拟 2-93 2.2.1 历史 2-93