收集了包括无人机和干扰因素的数据收集测试数据。无人机数据故意多样化,以各种距离和背景为特色。无人机在遥远的地方测试了模型检测无人机的准确性,该数据的细节受到限制,而在不同背景下的无人机测试了模型对噪声的弹性。根据类似于无人机或与无人机一起发现的对象,故意选择了干扰物数据。由于在选择和标记训练数据时犯了错误,该模型测试了模型被模型中存在的类似特征和偏见误导或愚弄的倾向。在步骤1中,总共收集了12206张图像,其中包括7755张图像和分散图像,其余4451张图像。
人工智力现在存在于我们日常生活的许多领域中。它有望领导新的和有效的业务模型,以在私营和公共部门中有效和以用户为中心的服务。在深度学习,(深度)增强学习和神经进化技术方面的AI进步可以为人工通用智能(AGI)铺平道路。但是,AI的开发和使用也带来了挑战。数据语料库中普遍存在用于训练AI和机器学习系统的固有偏见归因于大多数这些挑战。此外,多个实例强调了在基于动力的决策中需要隐私,公平性和透明度的必要性。本书系列将为研究人员,领导者,决策者和决策者提供一条途径,以分享AI最前沿的研究和见解,包括其在道德,可解释的,可解释的,隐私的,可信赖的,可信赖的和可持续的方式中的使用。
毫无疑问,俄罗斯在乌克兰的战争已经成为了解未来无人机战争如何形成的最重要的冲突。本研究报告通过对乌克兰战场上经过实战检验的实践的全面分析,确定了九个关键要点。这些经验教训涵盖技术、理论和政策。报告的四个章节探讨了在各个功能和作战领域中提高无人机能力的主要机会。它们还强调了在开发、集成和部署新型无人系统过程中面临的持续挑战。但重要的是,无人机并不是取得战略胜利或打赢战争的灵丹妙药。因此,本报告努力管理对无人机能力的期望,同时强调人力资本的核心作用。事实上,当与新的使能技术相结合时,熟练的专家可以创造出有效的无人机性能。
摘要:2020年秋天在2020年秋天发生的亚美尼亚和阿塞拜疆之间的短暂冲突引起了战略和国防界的轰动。武装僵局,自1994年以来一直在两个前苏联国家之间持续存在,突然通过创新使用现代军事技术而颠覆了。阿塞拜疆无人战斗机(UCAV)对亚美尼亚根深蒂固的部队造成了严重破坏,倒退了一个有争议的边境,该边界已经持续了二十年。这场冲突是否代表了军事事务的革命,充当即将发生的事情的预兆?还是重述了众所周知的概念的重要性,例如控制空气的控制?本文将审查战争的背景和过程,并以更大的观点的好处,随后对现代战争产生影响。
制定基于地理信息系统 (GIS) 的总体/发展规划是 AMRUT 下的重要改革之一。这项改革的目标是利用 GIS 为 AMRUT 计划下的所有城市制定总体规划,并开发通用的数字地理参考基础地图和土地利用图。然而,中小型城镇使用传统 GIS 技术制定总体规划的能力有限,因此,该部希望探索使用无人机 (UAV) 技术为这些城镇制定基于 GIS 的总体规划。为此,在印度测量总监的主持下成立了一个委员会,负责制定应用无人机技术为中小型城镇制定基于 GIS 的总体规划的设计和标准(参见 2018 年 9 月 26 日发布的命令号 K-14031/5/2016-AMRUT(CB)-Part(2))。
将车站作为艾登的待机点,期望精确着陆和起飞。体验快速部署和电池交换,从长时间的停机时间延迟了。车站的心脏是机器人手臂。它不仅可以在降落和起飞过程中充当稳定器,而且还可以执行闪电般的电池互换。
宾夕法尼亚州匹兹堡 - 2025年2月10日 - 今天的库存情报解决方案收集AI宣布将通过Modalai的Voxl 2 Autopilot提供的新的US-MADE-MADE Starling 2 Logis无人机来增强其DJI无人机,用于客户仓库库存数据收集。此添加在第2季度2025中获得,将有助于仓库操作和创新团队最大化收集AI软件解决方案,以提高计数和应用程序灵活性。收集AI计算机视觉技术使无人机可以自主飞行,而无需GPS,WiFi或基础设施更改。机器学习算法分析库存图片,读取和解释远远超出了条形码,包括批号,文本,有效期,案例计数和占用信息。仓库运营商可以将其实时物理库存与仓库管理系统(WMS)数据进行比较,以进行最高准确性所需的任何更改。该解决方案最常用于第三方物流(3PL),零售分销,制造以及食品和饮料,但它
操作环境 - 自动无人机俄罗斯乌克兰战争是第一次见证双方无人机的全面冲突。俄罗斯已经尝试了能够自主操作的柳叶刀和Kamikaze无人机,而乌克兰正在使用US-设计的SwitchBlade无人机,这些无人机能够使用算法识别目标。已经观察到了无人机中自主或基于AI的技术的缓慢整合,这实际上只是减少人类控制的软件更改。自主无人机的出现是由于较大的飞行数字构成的,这构成了控制飞行中众多无人机,避免障碍物和这些无人机的精确靶向的挑战。专家现在警告说,无人机的扩散正在推动军队将越来越多的控制权移交给人工智能(AI),并最终朝着可以在战场上运作而无需人类参与的系统。这可能需要一个自主保护循环,因为人类无法在没有AI的情况下防御自主无人机。无人机的自主权在分析无人机中的自主权之前,要理解两个术语 - AI和自动化通常可以互换使用。尽管这两个术语都可以更聪明,更有效地操作,但是这两个术语之间几乎没有概念上的差异。AI和自动化的共同点是数据。自动化设备整理数据时,AI系统对其进行了解释。
编辑委员会博士Mustafa Necmiİlhan博士 - 加兹大学 - Özlemçakir博士 - DokuzEylül大学协会。MehmetMerveÖzaydın-AnkaraHacıBayramVeli University Assoc。
