以提高代谢稳定性和实时监测药物位置。基于多糖的纳米前药由于其成分清晰、结构准确、载药量稳定、抗肿瘤活性高而受到广泛关注。14,15壳聚糖(CS)是一种天然无毒的高分子材料,具有良好的生物降解性和生物相容性,被广泛应用于抗肿瘤药物的递送,用于癌症的诊断和治疗。16,17此外,CS具有大量的氨基(-NH 2)和羟基(-OH),是极好的功能化修饰位点。18如果将疏水性抗癌药物通过共价键直接偶联到亲水性聚合物链上,可以大大防止药物过早释放。然而,以壳聚糖为基础形成的阳离子纳米粒子不仅缺乏肿瘤靶向作用,而且易受血清蛋白介导的聚集和消除。19 透明质酸具有天然电负性,可用于包覆阳离子基纳米粒子。同时,透明质酸由于其低免疫原性,高生物相容性以及靶向肿瘤特异性表达受体(簇决定簇44,CD44)而被用于药物递送系统。20 因此,HA功能化的药物递送系统可以主动靶向癌细胞。21,22
Buruli溃疡(BU)疾病是由分枝杆菌引起的被忽视的坏死性皮肤感染,是仅次于结核病和麻风病的第三种最常见的分枝杆菌疾病。感染主要发生在中非和西非的偏远,农村地区,也出现在澳大利亚,日本和巴布亚新几内亚。目前尚无针对Buruli溃疡疾病的疫苗,并且以前使用密切相关的细菌和亚基蛋白的所有尝试仅在部分成功。在这里,我们在小鼠中测试了一种复合亚基配方,该配方掺入了溃疡性分枝杆菌毒素霉菌乳元作为免疫调节剂,以及抗原AG85A和Polyketide Sythase酶酶A(KRA),用Quil-A辅助(KRA)形成。burulivac诱导了AG85A和KRA抗原特异性抗体,T细胞以及混合促疾病和抗炎的细胞因子反应,在14周的观察期间,在小鼠FOOTPAD模型中赋予了针对Buruli ulcer病的绝对保护。这两个都优于活体细菌疫苗,即BCG和缺乏霉菌性毒素(MUδ)的无毒的溃疡菌株。白介素10与保护密切相关。我们建议Burulivac是一名有前途的疫苗候选者,以抵抗Buruli溃疡疾病,需要进一步探索。
摘要:钙钛矿太阳能电池(PSC)由于性能的迅速提高而在科学界引起了极大的关注。无机钙钛矿设备的高性能和长期稳定性已被备受关注。这项研究介绍了通过建模使用无铅N - I-i-p甲基苯丁基溴化物(MASNBR 3)材料产生高效PSC的设备优化过程。我们已经彻底研究了吸收器和界面层对优化结构的影响。我们的方法利用石墨烯作为孔传输和吸收层之间的界面层。我们使用氧化锌(ZnO)/Al和3c - SIC作为吸收剂和电子传输层之间的界面层。优化过程涉及调整吸收层和界面层的厚度并最小化缺陷密度。我们提出的优化设备结构,ZnO/3C - SIC/MASNBR 3/Chaphene/Cuo/Au,表明理论功率转换效率为31.97%,填充因子为89.38%,当前密度为32.54 mA/cm 2,电压为1.112 V,量子为1.112 V,量子为94%。这项研究强调了Masnbr 3作为一种无毒的钙钛矿材料,可从可再生来源的应用中提供可持续能源。
人工智能(AI)的应用有可能彻底改变纳米医学的配方发展。这项研究研究了通过乳化 - 散热过程产生的孕激素负载固体脂质纳米颗粒(PG-SLN)的物理化学特征,重点是通过设计实验设计(DOE)和人造神经网络(ANN)(ANN)来证明这种受控制备方法的有效性。关键质量因素,包括硬脂酸,中链甘油三酸酯(MCT),pluronic F-127和丙烯乙二醇(PG)的量,使用DOE来简化实验设置。硬脂酸的浓度被鉴定为影响PG-SLN物理化学特性的关键因素,影响粒径(PS),多分散指数(PDI),ZETA电位(ZP)和%药物载荷(%DL)。确定了PS,PDI,ZP和%DL的最佳条件。 DOE揭示了多个运行的可接受值,ANN模型表现出高度的预测准确性,超过了响应表面方法(RSM)。 测试了选定的PG-SLN配方透皮药物的递送,与PG悬浮液相比,渗透率得到了改善。 用柠檬烯加载进一步增强了透皮药物的递送,这归因于林烯作为穿透性增强剂的作用。 此外,发现所选的PG-SLN配方对神经元细胞是安全且无毒的。 提出了DOE和ANN的组合来增强预测能力。 这项研究强调了PG-SLN在透皮药物递送中的潜力,强调了柠檬烯是一种安全有效的增强剂。确定了PS,PDI,ZP和%DL的最佳条件。DOE揭示了多个运行的可接受值,ANN模型表现出高度的预测准确性,超过了响应表面方法(RSM)。测试了选定的PG-SLN配方透皮药物的递送,与PG悬浮液相比,渗透率得到了改善。用柠檬烯加载进一步增强了透皮药物的递送,这归因于林烯作为穿透性增强剂的作用。此外,发现所选的PG-SLN配方对神经元细胞是安全且无毒的。提出了DOE和ANN的组合来增强预测能力。这项研究强调了PG-SLN在透皮药物递送中的潜力,强调了柠檬烯是一种安全有效的增强剂。这项研究有助于对在药物和生物医学领域应用AI工具的兴趣日益增长的兴趣,以改善预测性建模。
Cu掺杂。27但根据他们的实验结果,Cu无法进入Cs2AgBiBr6的晶格,而且也很难改变双钙钛矿的能带结构,掺杂后吸收边的偏移是由于引入了亚带隙态。他们研究小组还成功地将Fe3+掺入Cs2AgInCl6中,实现吸收边红移至约800nm。28此外,他们还成功地将Fe3+掺入Cs2AgBiBr6中,开发出新的自旋电子材料。29值得注意的是,从他们的样品照片来看,原来的红色单晶在Fe3+掺杂后变成了黑色,其吸收拖尾达到B800nm。29寻找一种稳定无毒的元素来有效延长Cs2AgBiBr6的吸收带仍然具有挑战性。在之前的工作中,30 我们成功地将 Fe 掺入 Cs 2 AgBiBr 6 中,将吸收扩展到近红外区域。作为 Fe 的同源物,Ru 在染料敏化太阳能电池 (DSSC) 中有着广泛的应用,例如,N719 染料就是 Ru 复合物。31 Gu 等人报道了将 Ru 3+ 掺入 Cs 3 Bi 2 I 9 中以取代部分 Bi 3+,并通过实验证实了 Ru 3+ 的可行性
材料的低导热率是其潜在应用在高性能热电设备中的关键基本参数。在室温下实验可获得今元(GE 1 -x sn x)半导体薄膜的纯度低电导率。在宽松的GE 1 -x Sn X二进制合金中,导热率随着SN浓度的增加而降低,这主要是通过合金通过合金增加原子之间的原子间距离来解释。在宽松的GE 1 -x sn X中,从58 w m -1 k -1中明显降低了20次,从58 w m -1 k -1降低到≈2.5w m -1 k -1,观察到sn含量最高为9%。该热导率仅比最先进的热电材料(胞晶硒酸硒酸盐)高2倍。ge 1-x sn x是一种无毒的组IV型半导体材料,它是使用半导体行业标准表育观生长技术的标准硅晶片上的外延生长的。因此,它可以导致期待已久的高性能低成本热电产生器,用于在人类日常生活中的室温应用,并将为CO 2发射和绿色的电力发电中的全球效果做出重大贡献。
对这两个问题的实质性解决方案。3随着纳米技术的发展,高级氧化过程(AOP)有些克服了这些问题。4,5 AOP是最环保的技术,用于去除由于其化学稳定性而无法通过传统方法处理的顽固有机污染物。6,7水和废水处理的概念主要在1980年发现。8在AOP过程中,产生活性氧(ROS),包括单线氧(O),臭氧(O 3),过氧化氢(H 2 O 2),羟基自由基(OH C)等物种。与其他氧化剂(如O,O 3和H 2 O 2)相比,其中OH C是一种高度氧化剂,具有2.8 eV的高度氧化剂,具有2.8 eV且不稳定,其氧化潜力分别为1.67、2.07和1.77 eV。10个光催化剂是产生强氧化剂的材料,即,o,o 3和oh c。11在AOPS中,Pho-Tocatalysts或半导体材料可以将太阳能直接转换为化学能,这是可再生能源生产和环境补救措施的一种非常便捷的方法。12,13光催化降解近年来引起了很大的关注,因为它具有稳定,清洁和无毒的方向以减少环境污染。14,15普通
摘要:合成化学表面活性剂(SCSS)是从化石燃料前体合成的一组用途的两亲性化学物质量,这些化石燃料前体已在各种工业应用中发现使用。它们的全球用法估计每年超过1500万吨,这导致环境破坏和对人类和其他生物的潜在毒理学影响均未减弱。当前的社会挑战以确保环境保护并减少对有限资源的依赖,导致人们对可持续和环保替代品(例如生物性活性剂)的需求增加,以取代这些有毒的污染物。生物表面活性剂是可生物降解,无毒的,并且通常在环境上兼容的两亲性化合物。尽管微生物生物表面活性剂替换SCSS的潜力巨大,但与SCS相比,限制其商业化的主要挑战限制其商业化的收益率和生产成本的大量成本。在这篇综述中,我们讨论了SCSS的释放,废水处理厂(WWTPS)是其释放到海洋的主要点来源,然后我们深入研究了这些污染物对海洋生物体和人类的后果。然后,我们探索微生物生物表面活性剂作为SCSS的替代品,重点是鼠尾草脂质,并以对当前和未来的工作进行商业化微生物生物性生物性侵蚀剂的一些观点结束。
公元前五世纪(B.C.430),雅典的修昔底德首先提到了他称为“瘟疫”的感染的免疫力(但不可能的鼠疫)。,但由于中国古代习俗保护儿童免受小痘的态度,免疫力的概念是通过使他们从从小痘病中恢复的患者的皮肤病变中制备的粉末来吸入粉末。到十二世纪,中国人观察到,从小痘中恢复过来的个体对进一步的攻击具有抵抗力,他们通过对皮肤进行小割伤并摩擦从感染者那里收集的ap来故意感染婴儿。 孩子们从感染中幸存下来,并在生命后期受到保护。 稍后,他们采用了一种从最轻微的小痘(Variolation)中收集的结ab的儿童的方法,而由于小痘的发病率从20%下降到1%。 这一消息在18世纪初传播到欧洲,很快就广泛使用。 在18世纪,欧洲因rinderpest(牛瘟疫)引起的牛死亡很普遍,并浸泡了一条绳子,并从rinderpest受影响的动物中鼻腔排出,并通过在易感动物中切开切口来插入脱水,从而降低了发生率。 在1774年,农民本杰明·杰斯(Benjamin Jesty)用离号病毒接种了妻子,以保护她免受小痘的侵害。 在1798年,爱德华·詹纳(Edward Jenner)(1749-1823)在一名奶牛场的建议接种后接种了一个八岁男孩,该男孩从牛波克中收集了泡沫,并保护了他免受严重的小痘的侵害。 接种绵羊没有死。到十二世纪,中国人观察到,从小痘中恢复过来的个体对进一步的攻击具有抵抗力,他们通过对皮肤进行小割伤并摩擦从感染者那里收集的ap来故意感染婴儿。孩子们从感染中幸存下来,并在生命后期受到保护。稍后,他们采用了一种从最轻微的小痘(Variolation)中收集的结ab的儿童的方法,而由于小痘的发病率从20%下降到1%。这一消息在18世纪初传播到欧洲,很快就广泛使用。在18世纪,欧洲因rinderpest(牛瘟疫)引起的牛死亡很普遍,并浸泡了一条绳子,并从rinderpest受影响的动物中鼻腔排出,并通过在易感动物中切开切口来插入脱水,从而降低了发生率。 在1774年,农民本杰明·杰斯(Benjamin Jesty)用离号病毒接种了妻子,以保护她免受小痘的侵害。 在1798年,爱德华·詹纳(Edward Jenner)(1749-1823)在一名奶牛场的建议接种后接种了一个八岁男孩,该男孩从牛波克中收集了泡沫,并保护了他免受严重的小痘的侵害。 接种绵羊没有死。在18世纪,欧洲因rinderpest(牛瘟疫)引起的牛死亡很普遍,并浸泡了一条绳子,并从rinderpest受影响的动物中鼻腔排出,并通过在易感动物中切开切口来插入脱水,从而降低了发生率。在1774年,农民本杰明·杰斯(Benjamin Jesty)用离号病毒接种了妻子,以保护她免受小痘的侵害。在1798年,爱德华·詹纳(Edward Jenner)(1749-1823)在一名奶牛场的建议接种后接种了一个八岁男孩,该男孩从牛波克中收集了泡沫,并保护了他免受严重的小痘的侵害。 接种绵羊没有死。在1798年,爱德华·詹纳(Edward Jenner)(1749-1823)在一名奶牛场的建议接种后接种了一个八岁男孩,该男孩从牛波克中收集了泡沫,并保护了他免受严重的小痘的侵害。接种绵羊没有死。该技术称为疫苗接种(VACCA表示拉丁牛),并广泛用于消除来自世界的小痘。他被认为是免疫学的父亲。直到1879年,法国路易斯·巴斯德(Louis Pasteur,1822 - 1895年)才使用现在称为Multocida的巴斯德拉氏菌的细菌时,才意识到詹纳的观察概念。 一旦他的助手不小心将这种生物的文化留在了实验室长凳上,然后去了暑假。 当他返回并感染鸡时,它们没有死。 巴斯德准备了新鲜的培养物并感染了同样的鸡,但在他惊讶的是,他看到鸟类抵抗感染。 巴斯德意识到,这类似于使用牛波克对小痘的疫苗接种的原则。 在疫苗接种中,动物暴露于毒性较低或无毒的有机体不会引起疾病,而是会产生免疫力,并防止对具有相同类型或密切相关生物体的强大生物体发作。 pasteur将此技术应用于炭疽病。 他通过在异常的高温下种植炭疽杆菌的芽孢杆菌。 在1881年,他首先用无毒的炭疽杆菌接种了一群绵羊,并邀请人们看着他用肉芽芽孢杆菌的强烈文化向绵羊挑战。 Pasteur控制疾病的奇迹广泛传播。 由于狂犬病是一个燃烧的问题,因此他被要求准备疫苗。 他从狂犬病狗中收集唾液,并将其接种成兔子。 当兔子死亡时,他收集了大脑和脊髓,干燥并制成粉末。 在中直到1879年,法国路易斯·巴斯德(Louis Pasteur,1822 - 1895年)才使用现在称为Multocida的巴斯德拉氏菌的细菌时,才意识到詹纳的观察概念。一旦他的助手不小心将这种生物的文化留在了实验室长凳上,然后去了暑假。当他返回并感染鸡时,它们没有死。巴斯德准备了新鲜的培养物并感染了同样的鸡,但在他惊讶的是,他看到鸟类抵抗感染。巴斯德意识到,这类似于使用牛波克对小痘的疫苗接种的原则。在疫苗接种中,动物暴露于毒性较低或无毒的有机体不会引起疾病,而是会产生免疫力,并防止对具有相同类型或密切相关生物体的强大生物体发作。 pasteur将此技术应用于炭疽病。 他通过在异常的高温下种植炭疽杆菌的芽孢杆菌。 在1881年,他首先用无毒的炭疽杆菌接种了一群绵羊,并邀请人们看着他用肉芽芽孢杆菌的强烈文化向绵羊挑战。 Pasteur控制疾病的奇迹广泛传播。 由于狂犬病是一个燃烧的问题,因此他被要求准备疫苗。 他从狂犬病狗中收集唾液,并将其接种成兔子。 当兔子死亡时,他收集了大脑和脊髓,干燥并制成粉末。 在中在疫苗接种中,动物暴露于毒性较低或无毒的有机体不会引起疾病,而是会产生免疫力,并防止对具有相同类型或密切相关生物体的强大生物体发作。pasteur将此技术应用于炭疽病。他通过在异常的高温下种植炭疽杆菌的芽孢杆菌。在1881年,他首先用无毒的炭疽杆菌接种了一群绵羊,并邀请人们看着他用肉芽芽孢杆菌的强烈文化向绵羊挑战。Pasteur控制疾病的奇迹广泛传播。由于狂犬病是一个燃烧的问题,因此他被要求准备疫苗。他从狂犬病狗中收集唾液,并将其接种成兔子。当兔子死亡时,他收集了大脑和脊髓,干燥并制成粉末。在将粉末与液体混合并送给狗。接种的狗没有狂犬病。1885年,巴斯德对约瑟夫·迈斯特(Joseph Meister)进行了第一次疫苗,他是一个小男孩,被一只狂热的狼咬伤。他可以观察到这个男孩没有狂犬病。然后他治疗了几名患者。巴斯德在巴黎建立了巴斯德研究所。于1885年7月6日进行了巴斯德狂犬病疫苗的第一次人类试验。这一天被视为人畜共患病日。在美国的同一时间,鲑鱼表现出死亡生物也可以用作疫苗。 他表明,据信引起猪霍乱的芽孢杆菌的热量杀死芽孢杆菌的培养物(现在的名称沙门氏菌霍乱)可以保护鸽子免受该生物体引起的疾病。 1888年P.P. 巴黎研究所的 Emile Roux和Alexander Yersin在白喉芽孢杆菌的培养物滤液中表现出细菌毒素,并描述了对这种毒素的免疫或抗毒素。在美国的同一时间,鲑鱼表现出死亡生物也可以用作疫苗。他表明,据信引起猪霍乱的芽孢杆菌的热量杀死芽孢杆菌的培养物(现在的名称沙门氏菌霍乱)可以保护鸽子免受该生物体引起的疾病。1888年P.P.Emile Roux和Alexander Yersin在白喉芽孢杆菌的培养物滤液中表现出细菌毒素,并描述了对这种毒素的免疫或抗毒素。
近几十年来,抗生素耐药微生物菌株的令人震惊的激增对全球公共卫生构成了重大威胁[1,2]。常规抗菌剂的局限性,例如某些内孢子和病毒的抗菌素耐药性和无效性,因此需要对新型方法进行有效抗击的新方法探索。纳米技术在这方面已成为有前途的途径,为抗菌应用提供了创新的解决方案[3]。纳米结构材料在克服耐药微生物带来的挑战方面表现出了巨大的潜力,为开发具有增强抗菌特性的有效纳米复合材料铺平了道路[4]。羟基磷灰石(HAP)是一种生物相容性和破骨电导材料,对各种生物医学设备和靶向药物递送引起了极大的兴趣。其出色的化学稳定性,无毒的性质和出色的生物相容性使其成为医疗应用的理想候选者[5]。hap是骨形成的主要矿物质,被包裹在胶原蛋白三重螺旋框架中,当与聚合物整合时,纯NHAP和HAP的纳米晶体已在药物递送环境中利用。探索其物理和化学属性与生物学用途的相关性如何成为一个非常有趣的研究主题[6,7]。