LTCC(低温共烧陶瓷)是一种多层基板技术,具有出色的射频和微波性能特征。其低烧结温度(约 900°C)允许与银和金等高导电性金属共烧。LTCC 基板具有出色的机械和电气性能,再加上嵌入无源元件的能力,可为高频应用提供卓越的射频性能和设备小型化。
在 APL,我们通常将塑料封装微电路 (PEM) 这一术语与商用现货 (COTS) 设备联系起来,但 PEM 具有塑料封装。请注意,合格制造商清单 (QML) 上可以找到少量 PEM,因此不能归类为 COTS。就本文而言,PEM 可以是微电路、半导体、无源元件或其他。反过来,COTS 设备是任何商业加工的组件。从历史上看,由于 PEM 具有商业含义,因此从未被认为适合航天应用。然而,随着军用级密封元件供应量的减少,PEM 已成为必需品。APL 决定使用 PEM 是基于内部和外部因素。在内部,有
XL4016 稳压器旨在最大限度地减少外部元件的数量。该模块由 XL4016 稳压器和一些其他有源(半导体)和无源元件组成。它具有 7805 5V 稳压器,可调节 LM358 芯片的输入电压,该芯片用作反馈电压比较器。TL431 用作分流稳压器,用作比较器电路的正电压基准。XL4016 是一个开关稳压器,这意味着它用作高频开关。双(肖特基)二极管用作电压整流器,它具有高速特性,这对于转换器的效率至关重要。电感线圈用作能量转换元件。转换器电路具有输入和输出电解电容器,它们用作滤波器,以清除电路中先前未调节和开关部分的纹波并存储电能。
由无源元件组成的电路元件对于实现高能量和功率密度具有重要意义,并且电路的研究结果接近准确。本文阐明了在不同应用中实现高电导率、电感和电容值的可能方法,并讨论了它们的组合。主要目标是获得高电感、电容和电导值。超级电容器是一种适用于脉冲功率应用的脉冲装置,其技术已在各种应用中得到充分认可。然而,超级电感的概念很新,它可以为大量应用开辟可能性。本文旨在通过对超级电容器和超导体超级电感的分析方法,简要介绍和提供有关实现超级电感的可能性的信息,概述相对磁导率和电感值、优点和应用。
这种转变还通过对系统硬件(包括集成电路、无源元件(电阻器、电容器、电感器)和印刷电路板)的攻击,为我们的通信基础设施带来了新的漏洞。硬件漏洞可能包括:• 在设计过程中插入恶意功能,• 通过因硬件设计弱点或架构缺陷而存在的非法接入点更改系统行为,• 通过非预期的通信(侧)通道提取敏感或秘密信息,• 通过逆向工程窃取知识产权,• 伪造,包括回收、克隆或重新标记的组件或声称是正品的系统,• 修改以插入隐藏功能。硬件安全性一直是一个问题,并且正在开发许多缓解策略。没有一种方法可以解决这个问题,但新方法可以增强或改进现有方法。
在本课程中,我们将探讨模拟电路分析和设计的高级主题,重点是与传感器接口相关的概念。我们将重点介绍离散电路和基于运算放大器的电路,即由运算放大器和无源元件(如电阻器和电容器)以及晶体管(BJT 和 MOSFET)组成的电路。我们将深入研究噪声(约翰逊噪声、散粒噪声、闪烁噪声),并学习如何设计电路以在实际设计约束(例如功率、成本、组件可用性)下实现特定的性能目标。我们将探讨线性的概念以及具有非线性特性的器件(例如晶体管、二极管和运算放大器)如何影响电路和系统性能。我们将讨论使用反馈设计精密电路的优势。我们将概述数据转换器(ADC 和 DAC),并探讨各种架构(奈奎斯特、过采样、Delta-Sigma)及其性能限制(噪声、线性、功率、速度)。
新的 48V 技术已在电动机系统中标准化,以减少电动汽车 (EV) 的排放。它取代了传统的 12V 系统,提供额外的高电压电池来满足增加的功率需求。除了动力系统的电动机和电池组外,48V 系统还具有其他直接操作的优势,例如加热和空调应用。该技术提高了功率能力,可用于启动时更重的负载,例如空调和催化转化器。这进而推动了适合 48V 配置的本地 DC-DC 转换器和无源元件(包括电容器和电感器)的进步。这样的发展可能导致该技术在全电池电动系统中得到广泛采用,从而有助于将电池组的 400 或 800 V 输出转换为 48 V 以分配到整个车辆。
新的 48V 技术已在电动机系统中标准化,以减少电动汽车 (EV) 的排放。它取代了传统的 12V 系统,提供额外的高电压电池来满足增加的功率需求。除了动力系统的电动机和电池组外,48V 系统还具有其他直接操作的优势,例如加热和空调应用。该技术提高了功率能力,可用于启动时更重的负载,例如空调和催化转化器。这进而推动了适合 48V 配置的本地 DC-DC 转换器和无源元件(包括电容器和电感器)的进步。这样的发展可能导致该技术在全电池电动系统中得到广泛采用,从而有助于将电池组的 400 或 800 V 输出转换为 48 V 以分配到整个车辆。
新的 48V 技术已在电动机系统中标准化,以减少电动汽车 (EV) 的排放。它取代了传统的 12V 系统,提供额外的高电压电池来满足增加的功率需求。除了动力系统的电动机和电池组外,48V 系统还具有其他直接操作的优势,例如加热和空调应用。该技术提高了功率能力,可用于启动时更重的负载,例如空调和催化转化器。这进而推动了适合 48V 配置的本地 DC-DC 转换器和无源元件(包括电容器和电感器)的进步。这样的发展可能导致该技术在全电池电动系统中得到广泛采用,从而有助于将电池组的 400 或 800 V 输出转换为 48 V 以分配到整个车辆。