摘要:液晶 (LC) 微液滴阵列是一种精巧的系统,由于其对表面性质变化的敏感性和强光学活性,具有广泛的应用,例如化学和生物传感。在这项工作中,我们利用自组装单层 (SAM) 对表面进行化学微图案化,并优先选择液晶占据的区域。利用不连续脱湿,将一滴液体拖到图案化表面上,展示了一种新颖、高产的方法,可将液晶限制在化学定义的区域中。通过改变液滴的大小和液晶相,证明了该方法的广泛适用性。虽然液滴的光学纹理由拓扑约束决定,但额外的 SAM 界面显示出锁定非均匀排列。表面效应高度依赖于尺寸,其中较大的液滴在向列相液滴中表现出不对称的指向矢结构,而在胆甾相液滴中表现出高度打结的结构。
自割液(SRF),例如长链酒精溶液,是一种特殊的具有表面张力的液体,其异常依赖于温度,导致热乳头流与正常流体(NFS)的热毛细血流显着差异。最近对SRF的兴趣主要是由于它们在各种微重力应用和微流体中增强流体动力学和热传输中的作用,而其许多基本过程仍未开发。这项研究的重点是模拟和研究在不均匀加热条件下与自吐液层相互作用的SRF滴的行为。在这方面,我们采用具有相位模型的强大基于中央力矩的晶格Boltzmann方法(LBM),该模型结合了三个分布功能:一种用于两流体运动的分布函数:高密度的高密度raTIOS,包括界面的Marangoni压力,用于基于保守的Allen-cahn等分的三分之二的界面,用于捕获的界面,并捕获三分之二有效效果。我们介绍了SRF中的合并和捏合过程,并将其与NFS中的合并过程进行比较。我们的模拟表明SRF比NFS早于捏。在SRF中,流体向界面围绕界面的较热区域移动,这与NFS中的流动相反。我们还观察到,增加ohnesorge数量OH抑制了捏合过程,突出了粘性力相对于表面张力的作用,该作用是由重力效应或键数BO调节的。此外,我们探讨了如何分别在温度,m 1和m 2上分别改变表面张力的无量纲线性和二次灵敏度系数,以及无量纲的无量化热通量q影响着结合/捏合行为。有趣的是,与未加热的情况相比,在SRF中增加了M 2或Q,减少了捏合和扩大所需的时间。相比之下,在NFS中,增加M 1或Q会在捏合之前延长停留时间,并扩大了发生合并的OH-BO图中的区域。这些差异被证明是由于界面上热毛细力的变化所致。总体而言,我们发现在不均匀的加热下,SRF会增强捏合过程,从而在更广泛的条件范围内与NFS相比,捏合时间较短。
在本研究中,使用了能够选择性地与被荧光染色的单链目标DNA(荧光DNA)结合的单链DNA修饰的2种大小和材质不同的探针粒子(金纳米粒子,Probe1;聚苯乙烯微粒,Probe2),尝试通过用激光照射含有这些粒子的溶液,利用光的力量(光诱导力)以及由该力引起的光诱导对流,使目标DNA和探针粒子局部集中,从而加速DNA双链的形成。结果发现,经过5分钟的光照,探针1和2的凝集物形成约数十μm大小,荧光DNA被聚集并捕获在凝集物的间隙中。还发现,与探针颗粒表面的DNA牢固结合的互补碱基序列(匹配DNA)越强,发出的荧光信号就越强(图2左)。特别地,本研究中使用的微粒经历了“米氏散射”,即当微粒的尺寸与激光波长相当时,光会发生强烈散射的现象。这种增加的光功率可用于提高浓缩效率。此外,由于光力增加时组装体变得更加稳定,因此人们认为可以实现迄今为止难以实现的固液界面光诱导双链形成的加速。通过利用该机制,我们实现了 7.37 fg/μL 的检测限,成功以比传统数字 PCR 方法(检测限:约 200 fg/μL)高一到两个数量级的灵敏度检测 DNA(图 2,右)。通常情况下,由于互补 DNA 分子之间碰撞的概率较低,在如此稀释的 DNA 溶液中形成双链需要很长时间。异探针光学浓缩法对 DNA 的检测之所以具有高灵敏度和快速性,被认为是由于通过显著增加聚集体内的局部 DNA 浓度,加速了这些极少量 DNA 双链的形成。此外,我们证明了通过用光照射金纳米粒子并利用产生的光的热量(光热效应)来松散双链键并增加键断裂的概率,来自聚集体的荧光信号表现出极高的碱基序列特异性,从而能够清楚地检测和识别24个碱基长的目标DNA中仅含有单个碱基的突变,包括位置依赖性(图3)。仅使用聚苯乙烯(Probe2)的情况,在所用激光的波长(1064nm)下几乎没有光热效应,因为与探针是同一类型,所以称为“同源探针”,否则称为异源探针。
需要更多有关这些助推器后免疫反应动态的信息,尤其是在脆弱的人口中。因此,我们检查了包括老年人在内的一般人口中的第三剂和第四剂疫苗接种后的抗体滴度变化。Bizen Covid-19抗体测试项目是一项基于社区的调查,始于2022年6月3日,在该调查中,在该抗体滴度中,在位于日本西部的冈山县Bizen City的居民中,每2个月对抗体滴度进行测量。该研究得到了冈山大学医院伦理委员会的批准(2205-061),所有参与者均提供了书面知情同意。,我们直接从当地居民或当地机构(例如疗养院,市政厅和城市的其他机构)招募了1,956个年龄18岁或18岁以上的参与者。在此分析中,我们将至少接受第三次疫苗剂量的参与者的抗体滴度进行了第三次测量,并且在自我报告调查表中证实了COVID-19感染的史。从1,862名参与者中得出了总共2,868个测量值(从第二个;从第二个; 966个; 966; 966,第三次测量抗体滴度的965)。其中,有1,720名参与者(92.4%)可用多次测量(即超过两个测量值)。我们使用Mokobio Sars-Cov-2 Igm&IgG量子点免疫测定法(Mokobio Biotechnologic r&d Center Inc.,Rockville,Mockville,M.Dive)和测量的抗体滴度,使用Mokobio SARS-COV-2 IGM和IgG量子点免疫分子(Mokobio Biotechnologic Rechnologic r&d Center Inc.,Rockville,Rockville,MD,MD,MD,美国)。先前的研究已经证明了该测量的有效性,该测量是基于使用该设备测量的抗体滴度和
基于鼻咽癌EBV感染的基于抗体的筛查与中国南部等流行地区的鼻咽癌(NPC)密切相关(NPC)(1)。筛查高危抗体特征的种群可以通过改善早期诊断来减轻NPC的负担(2,3)。用于针对EBV蛋白的检查,粘膜特异性抗体(IGA),例如EBNA1和VCA病毒capsid抗原(VCA)p18和全身性抗体(IgG),针对BNLF2B可以分散患有早期NPC(2、4、5、5、5、5、5、5、5、5、5、5、5、5、5、5、5、5、5、5、5)的人。同样,通过对后来被诊断为NPC的健康个体中的抗体进行抗体(6-8)的健康个体中的抗体(6-8)。尽管此类研究揭示了NPC风险的生物标志物,但健康的EBV
通过在线 UV-VIS 分析和 PAT 驱动的 UF/DF 系统克服 TFF 中的挑战 质量依赖型 TFF 系统带来的最常见挑战包括过程碎片化、测量结果不稳定以及人为失误的风险很高。解决这些挑战需要采用新颖的方法,并具备实时在线产品样品和测试、自动化仪表、分析检测、连续生物处理和验证服务等功能。两种现有的 Repligen 产品 — KrosFlo ® KR2i 系统和 CTech™ FlowVPX ® 系统 — 可以成功结合使用以实现这些目标并应对 TFF 系统的挑战。KrosFlo KR2i TFF 系统是一种自动化的实验室规模 TFF 系统,用于下游应用,而 CTech FlowVPX 系统是一种在线 UV-Vis 光谱仪,具有改变光程的独特能力。它们共同构成了“实时过程管理”(RPM™)系统,该系统通过浓度测量控制为UF/DF过程提供过程管理。
摘要:半导体纳米晶须,特别是基于零维 (0D) C 70 富勒烯的纳米结构晶须,由于其在现代电子学中的巨大应用潜力而受到积极讨论。我们首次提出并实现了一种基于 C 70 分子在基底表面热蒸发过程中自组织的纳米结构 C 70 富勒烯晶须的合成方法。我们发现,在基底表面的甲苯中 C 70 溶液滴蒸发后,C 70 纳米晶须的合成开始取决于基底温度。我们已提供实验证据表明,初始液滴中 C 70 浓度的增加和基底温度的增加都会导致 C 70 纳米晶须的几何尺寸增加。所获得的结果为溶质浓度和基底温度在一维材料合成中的作用提供了有用的见解。
摘要 我们提出了一种基于液滴的微流体系统,该系统可在芯片上实现基于 CRISPR 的基因编辑和高通量筛选。微流体装置包含一个 10 × 10 元件阵列,每个元件包含用于两个电场驱动操作的电极组:用于合并液滴以混合试剂的电润湿和用于转化的电穿孔。该装置可以并行执行多达 100 个基因改造反应,为生成遗传途径组合优化和可预测生物工程所需的大量工程菌株提供了一个可扩展的平台。我们通过基于 CRISPR 的两个测试案例的工程改造展示了该系统的能力:(1)破坏大肠杆菌中酶半乳糖激酶(galK)的功能;(2)靶向改造谷氨酰胺合成酶基因(glnA)和蓝色色素合成酶基因(bpsA),以提高大肠杆菌中的靛蓝素产量。
。cc-by-nc-nd 4.0国际许可证。是根据作者/资助者提供的预印本(未经同行评审认证)提供的,他已授予Biorxiv的许可证,以在2025年2月11日发布的此版本中显示在版权所有的此版本中。 https://doi.org/10.1101/2025.02.09.637351 doi:Biorxiv Preprint
通过剪切变稀,在临界施加应力下可逆地从固体转变为流体。[2] 屈服应力流体是一类非常有用的材料,可实现众多应用,包括表面涂层、各种食品和消费品、注射药物输送[3–5] 和各种形式的 3D 打印。[6–9] 通过平移浸没在屈服应力流体浴中的喷嘴,同时注入不混溶相,可以生成嵌入的液滴。喷嘴的移动使流体浴屈服并流化,由于注入相与流体材料的表面张力,液滴形成。形成后,由于流体浴的有效屈服应力超过了液滴上的浮力应力,液滴静态悬浮在原位[10–12],并且即使不使用表面活性剂,它们在空间上也是孤立和稳定的。先前的研究已经为屈服应力流体与不混溶注入相的模型配对建立了可用的操作空间以及喷嘴移动速度与液滴直径之间的关系。[1]