2021 年,美国有超过 106,000 人死于药物过量。这比死于枪击伤(48,830 人)、跌倒(44,686 人)或机动车事故(42,939 人)的人数还要多。这些都是可预防的死亡原因,因此,它们是一个公共卫生问题。减少死亡人数需要进行研究以确定风险因素,然后制定干预措施,使环境更安全并阻止不安全行为。机动车事故是一个很好的研究案例。从 1972 年到 2019 年,美国车祸死亡率下降了一半以上,从每 100,000 人 26.9 人下降到 11.9 人。要实现这一目标需要多种干预措施,包括要求使用安全带和降低车速限制的法律、对青少年颁发分级驾驶执照、实施更安全的道路建设、使用安全气囊等新技术以及“母亲反对酒后驾驶”等组织的倡导。一些简单的干预措施非常有效。例如,仅仅使用安全带就可以将汽车前排乘客的死亡风险与未系安全带的人相比降低 45%。前方防撞等新技术的效果可能会更好。美国汽车协会交通安全基金会的研究估计,如果所有汽车都配备这些技术并由驾驶员正确使用,每年可以防止 270 多万起交通事故。在本期中,我们探讨了一项防止药物过量死亡的努力。根据美国疾病控制与预防中心的数据,在 20 世纪 90 年代,使用奥施康定等处方阿片类药物导致药物过量案例增多。在过去十年中,强效合成阿片类药物(如芬太尼)大大增加了用药过量和死亡的风险——自 2015 年以来,每年因阿片类药物过量而死亡的人数增加了一倍多。成瘾是一种疾病;这里的目标是让人们活下去,这样他们就可以接受治疗并重建生活。获得纳洛酮(一种逆转阿片类药物过量的药物)是一种工具。另一个是过量预防中心,人们可以在受监督的环境中使用药物。正如自由科学记者 Tara Haelle 报道的那样,尽管数据显示过量预防中心在挽救生命方面是有效的(第 16 页),但美国在开设过量预防中心方面落后于其他一些国家。目前,美国只有两家官方批准的过量预防中心,均位于纽约市。为了了解这些中心在全国范围内的运作情况,研究人员正准备研究纽约站点以及计划于今年晚些时候在罗德岛开设的一个站点的影响。哈勒指出,目前开设更多药物过量预防中心的障碍包括解决法律障碍和当地顾虑。但随着阿片类药物危机的持续,一些政府官员和社区似乎越来越愿意接受任何可以拯救生命的工具。应对公共卫生威胁的工作永无止境。新的风险不断出现,无论是合成阿片类药物的出现,还是开车时使用手机。研究有助于衡量新公共安全方法的有效性,以及如何最好地实施挽救生命的干预措施。— Nancy Shute,主编
无线通信网络可视为位于某个域中的节点集合,这些节点可以是发送器或接收器(根据所考虑的网络,节点将是移动用户、蜂窝网络中的基站、WiFi 网状结构的接入点等)。在给定时间,一些节点会同时向自己的接收器发送数据。每个发送器-接收器对都需要自己的无线链路。从链路发送器接收到的信号会受到从其他发送器接收到的信号的干扰。即使在最简单的模型中,从某一点辐射的信号功率以欧几里得距离各向同性的方式衰减,节点位置的几何形状也起着关键作用,因为它决定了每个接收器处的信干噪比 (SINR),从而决定了以给定比特率同时建立此链路集合的可能性。接收器看到的干扰是从所有发送器(其自己的发送器除外)接收到的信号功率的总和。
空气污染是不容忽视的环境问题之一。工业增长和城市化导致许多地区的空气污染物浓度升高。这些污染物会对人类健康和其他生物造成损害。现有的污染物排放监测系统,如 Opsis、Codel、Urac 和 TAS-Air 指标通常很昂贵。此外,由于其工作原理,这些系统在烟囱上安装有限制。这导致工厂周围的其他区域不受监控,从而导致健康问题。本文提出了一种基于无线传感器网络 (WSN) 技术的工业空气污染监测系统。该系统与全球移动通信系统 (GSM) 集成,其使用的通信协议是 zigbee。该系统由传感器节点、控制中心和数据库组成,通过数据库可以存储传感数据,用于历史和未来规划。所提出的系统可以部署到工业中,用于监测工艺过程中工业排放产生的一氧化碳 (CO)、二氧化硫 (SO 2 ) 和粉尘浓度。
前言:近年来,量子计算机的研究和实践成果给经典和广泛使用的加密方案(如 Rivest‐Shamir‐Adleman 算法和 ECC(椭圆曲线密码))带来了重大挫折。RSA 和 ECC 分别依赖于整数分解问题和离散对数问题,这些问题可以通过运行臭名昭著的 Shor 算法的足够大的量子计算机轻松解决。因此,需要评估在传统计算机和量子计算机中都难以解决的加密方案。本系列报告对后量子密码方案进行了详细的调查,并强调了它们在受限设备中提供安全性的适用性。全面介绍了可能取代 RSA 和 ECC 以在受限设备中提供安全性的方案。虽然后量子密码学是一种开发对因式分解和其他量子算法具有鲁棒性的新型经典密码系统的努力,这当然是一种选择,但这并不能完全解决问题。关键在于,可能存在未被发现的量子算法(或未被发现的经典算法),它们可能轻易破坏新密码系统的安全性。换句话说,后量子密码学很可能只能提供部分和暂时的解决方案。相比之下,本系列中讨论的量子密钥分发 (QKD) 提供了最终的解决方案:通过诉诸不可破解的自然原理(如不确定性原理或纠缠的一夫一妻制)来恢复安全性和保密性。尽管 QKD 为安全问题提供了最终的解决方案,但其理想的实现在实践中很难实现,并且有许多悬而未决的问题需要解决。一方面,完全独立于设备的 QKD 协议提供了最高级别的量子安全性,但它们的实现要求很高,并且密钥速率极低。另一方面,更实用的 QKD 协议假设对其设备有一定程度的信任,这一假设使它们能够实现合理的速率,但这也带来了危险的旁道攻击的可能性。除了安全性和速率之间的权衡之外,速率和距离之间也存在另一个重要权衡。如今,我们知道存在一个基本限制,限制了任何点对点 QKD 实现。给定一个传输率为 𝜂 的有损链路,双方分发的密钥容量不能超过信道的密钥容量,即 −𝑙𝑜𝑔 2 (1 −𝜂) ,即在长距离下每个信道使用 1.44𝜂 个秘密比特的 𝑎 缩放。基于连续变量系统和高斯状态的 QKD 协议的理想实现可能接近此容量,而基于离散变量的协议则因其他因素而低于此容量。为了克服这个限制并实现 QKD 的长距离高速率实现,我们需要开发量子中继器和量子网络。通过这种方式,我们可以实现更好的长距离扩展,并通过采用更复杂的路由策略进一步提高速率。量子中继器和安全 QKD 网络的研究是当今最热门的话题之一,本系列也对此进行了介绍。本系列旨在概述量子密码学领域最重要和最新的进展,包括理论和实验。在短期内,我们预计量子安全和 QKD 将与所谓的后量子安全解决方案竞争,因此,我们在本系列的单独报告中详细讨论了每种技术的优缺点。本报告涵盖了设计解决方案和量子物理。在将本书用于本科和研究生课程时,我们在每份报告中都加入了一些设计示例,以取代在章节/书末尾使用“问题和解决方案”附录的传统概念。这使得学生可以使用更复杂的作业进行团队合作。我们的学生对这种方法表现出了极大的热情。除大学之外,研究、工业和监管机构的专业人士也应该受益于该系列不同报告的全面报道。
为了充分发挥无人机的潜力,美国决策者和行业需要共同努力,打造一个鼓励商用无人机部署的监管环境。未来几个月,决策者将解决一个关键问题:确定无人机如何通信——彼此之间、与其他设备之间、与周围环境之间——然后制定反映这一决定的标准和流程。幸运的是,答案很明确:决策者应该支持使用商用无线网络进行无人机通信。这些网络由授权频谱提供支持,可提供安全商用无人机应用所需的覆盖范围、可靠性、安全性和服务质量。
为了使美国充分发挥无人机的潜力,政策制定者和行业需要共同努力,打造一个鼓励商业无人机部署的监管环境。在接下来的几个月里,政策制定者将解决一个关键问题:确定无人机如何通信——彼此之间、与其他设备之间、与周围环境之间——然后创建反映这一决定的标准和流程。值得庆幸的是,答案很明确:政策制定者应该支持使用商业无线网络进行无人机通信。这些网络由授权频谱提供支持,提供安全商业无人机应用所需的覆盖范围、可靠性、安全性和服务质量。
从业务角度来看是什么?很多。可靠的电力基础设施对成本和收入都有重大影响。将功率运行到成千上万的小单元将很昂贵。将成本降低一两个点可以产生重大节省,这可以减少一两天的部署时间。在收入方面,我们知道网络中断对流失率的影响。与绝大多数电池网站依靠较旧的电网来获得主要功率,对可靠的备份功率的需求比以往任何时候都更为重要。
监控和控制基础设施可以放置在地理上分散的位置,由多种设备和系统架构组成,并受到严格的环境和保护法规的约束。随着预算缩减和系统扩展,在优化系统性能和数据可用性的同时,最大限度地降低部署和运营成本变得越来越重要。Trio™ 许可和免许可数据无线电为 SCADA 和远程遥测应用提供了经济高效、多功能的无线解决方案。
摘要:基于万物互联 (IoE) 的智能服务预计将在未来引起学术界和工业界的广泛关注。尽管第五代 (5G) 是一种很有前途的通信技术,但它无法满足新应用的全部需求。第六代 (6G) 技术有望克服 5G 技术的局限性。未来 6G 网络的愿景和规划已经开始,旨在满足移动通信的严格要求。我们的目标是在这篇评论中探索实现 6G 技术的最新进展和潜在挑战。我们设计了一个基于计算技术、网络技术、通信技术、用例、机器学习算法和关键推动技术的分类法。在这方面,我们随后重点介绍了 6G 的潜在特性和关键领域。这篇评论详细阐述了包括量子通信、触觉通信、全息通信、太赫兹通信、可见光通信 (VLC) 生物纳米物联网在内的关键技术突破,这些突破可能会对无线通信产生深远影响。在这篇评论中,我们的主要重点是讨论可以开发无缝和可持续网络的潜在支持技术,包括共生无线电、区块链、新通信范式、可见光通信和太赫兹。这些变革性可能性可以推动管理快速增长的服务和设备数量的激增。此外,我们还研究了可能妨碍 6G 网络性能的开放研究挑战。最后,我们概述了几个实际考虑因素、6G 关键项目和未来方向。我们设想 6G 将经历前所未有的突破,以消除技术不确定性,并为后续研究提供启发性的研究方向。虽然不可能设想 6G 的完整细节,但我们相信这项研究将为未来的研究工作铺平道路。