Loading...
机构名称:
¥ 1.0

前言:近年来,量子计算机的研究和实践成果给经典和广泛使用的加密方案(如 Rivest‐Shamir‐Adleman 算法和 ECC(椭圆曲线密码))带来了重大挫折。RSA 和 ECC 分别依赖于整数分解问题和离散对数问题,这些问题可以通过运行臭名昭著的 Shor 算法的足够大的量子计算机轻松解决。因此,需要评估在传统计算机和量子计算机中都难以解决的加密方案。本系列报告对后量子密码方案进行了详细的调查,并强调了它们在受限设备中提供安全性的适用性。全面介绍了可能取代 RSA 和 ECC 以在受限设备中提供安全性的方案。虽然后量子密码学是一种开发对因式分解和其他量子算法具有鲁棒性的新型经典密码系统的努力,这当然是一种选择,但这并不能完全解决问题。关键在于,可能存在未被发现的量子算法(或未被发现的经典算法),它们可能轻易破坏新密码系统的安全性。换句话说,后量子密码学很可能只能提供部分和暂时的解决方案。相比之下,本系列中讨论的量子密钥分发 (QKD) 提供了最终的解决方案:通过诉诸不可破解的自然原理(如不确定性原理或纠缠的一夫一妻制)来恢复安全性和保密性。尽管 QKD 为安全问题提供了最终的解决方案,但其理想的实现在实践中很难实现,并且有许多悬而未决的问题需要解决。一方面,完全独立于设备的 QKD 协议提供了最高级别的量子安全性,但它们的实现要求很高,并且密钥速率极低。另一方面,更实用的 QKD 协议假设对其设备有一定程度的信任,这一假设使它们能够实现合理的速率,但这也带来了危险的旁道攻击的可能性。除了安全性和速率之间的权衡之外,速率和距离之间也存在另一个重要权衡。如今,我们知道存在一个基本限制,限制了任何点对点 QKD 实现。给定一个传输率为 𝜂 的有损链路,双方分发的密钥容量不能超过信道的密钥容量,即 −𝑙𝑜𝑔 2 (1 −𝜂) ,即在长距离下每个信道使用 1.44𝜂 个秘密比特的 𝑎 缩放。基于连续变量系统和高斯状态的 QKD 协议的理想实现可能接近此容量,而基于离散变量的协议则因其他因素而低于此容量。为了克服这个限制并实现 QKD 的长距离高速率实现,我们需要开发量子中继器和量子网络。通过这种方式,我们可以实现更好的长距离扩展,并通过采用更复杂的路由策略进一步提高速率。量子中继器和安全 QKD 网络的研究是当今最热门的话题之一,本系列也对此进行了介绍。本系列旨在概述量子密码学领域最重要和最新的进展,包括理论和实验。在短期内,我们预计量子安全和 QKD 将与所谓的后量子安全解决方案竞争,因此,我们在本系列的单独报告中详细讨论了每种技术的优缺点。本报告涵盖了设计解决方案和量子物理。在将本书用于本科和研究生课程时,我们在每份报告中都加入了一些设计示例,以取代在章节/书末尾使用“问题和解决方案”附录的传统概念。这使得学生可以使用更复杂的作业进行团队合作。我们的学生对这种方法表现出了极大的热情。除大学之外,研究、工业和监管机构的专业人士也应该受益于该系列不同报告的全面报道。

系列:7G 无线网络

系列:7G 无线网络PDF文件第1页

系列:7G 无线网络PDF文件第2页

系列:7G 无线网络PDF文件第3页

系列:7G 无线网络PDF文件第4页

系列:7G 无线网络PDF文件第5页

相关文件推荐

2020 年
¥11.0
2024 年
¥1.0
2023 年
¥1.0
2025 年
¥5.0
2023 年
¥2.0
2024 年
¥1.0
2025 年
¥1.0
2025 年
¥1.0
2025 年
¥30.0
1900 年
¥1.0
2021 年
¥1.0
2024 年
¥1.0
2020 年
¥1.0
2021 年
¥2.0
2023 年
¥1.0
2022 年
¥1.0
2024 年
¥6.0
2023 年
¥1.0
2023 年
¥1.0
2022 年
¥1.0
2023 年
¥1.0
2022 年
¥1.0
2024 年
¥1.0
2020 年
¥1.0
2020 年
¥5.0
2022 年
¥1.0
2020 年
¥1.0
2020 年
¥2.0
2021 年
¥1.0
2025 年
¥1.0