移动性、物联网和可穿戴设备的兴起将处理转移到传感器的边缘,这是因为需要减少延迟、通信成本和总体能耗。虽然深度学习模型在各个领域都取得了显著的成果,但将其部署在边缘用于实时应用仍然需要耗费大量的计算资源。神经形态计算是一种有前途的范式转变,其特点是共定位的内存和计算以及事件驱动的异步感知和处理。在本次演讲中,我们将了解如何使用 SynSense Speck 神经形态芯片解决边缘物体检测这一无处不在的计算机视觉任务,该芯片由基于事件的传感器和基于脉冲的异步处理器组成。我们将了解如何减少用于训练的片外时钟驱动模拟与片上事件驱动推理之间的精度差异,后者以平均 20mW 的运行功率实现人脸检测。我们将进一步讨论神经形态计算的当前挑战和机遇,从建模到训练和基准测试。
主要关键词