目标。我们旨在更好地表征太阳能电晕的条件,尤其是在发生构成和喷发性浮游的情况下。在这项工作中,我们对冠状动脉进化进行了建模,围绕在太阳周期期间观察到的231个大型植物。方法。使用每个事件周围的热震和磁成像矢量磁场数据,我们采用非线性的无线弹力外推来近似太阳能源区域的冠状能和螺旋性预算。应用于选定的光平量和冠状量的时间序列的超级时期分析和动态时间扭曲用于固定前和后的时间演化的特征,并评估与浮动相关的变化。结果。在延伸到主要频率之前的24小时内,总磁能和未签名的磁性频率被认为相对于彼此而言紧密发展,而不论频率是类型的。在构建浮游之前,自由能以一种与未签名的漏斗表现出更相似性的方式,而不是当前携带的场的螺旋性,而在喷发浮游之前则可以看到相反的趋势。此外,在组合活性区域非电位性和局部稳定性的测量时,可以正确预测超过90%的主要浮力的植物类型。冠状能量和螺旋性预算在爆发大型M级别浮游后的6至12小时内恢复到前水平,而爆发X伏的影响持续更长的时间。最后,爆发性X级浅水片的补充时间为12小时,可以作为在几个小时的时间范围内罕见地观察到喷发X级流动的部分解释。
自发性脑内出血(ICH)约占中风病例的15%,并且仍然是神经系统发病率和死亡率的相当多的来源。鉴于老年人在老年人中的预期寿命和抗血栓疗法的广泛使用,ICH的发生率预计在未来几年[1,2]。主要ICH是指受损的动脉或小动脉的破裂,是不同类型的脑小血管疾病的最终表现,在大脑出血发生之前的几年内,在临床上进展[3]。尽管主要ICH可能负责80%的非创伤性ICH病例,但临床医生应考虑寻找其他原因(凝结型,血管畸形破裂,海绵状畸形,Moyamoya,Moyamoya,tumor,tumor,tumor,tumor,tumor,cerebral静脉hom虫的剧震(其他),也称为第二届评论。组织病理学观察(通过流行病学,神经影像学和遗传研究证实)证明,主要基础血管疾病根据大脑出血的位置而有所不同,因此,可以将主要ICH分类为两个主要类别:非lobar和Lobar和Lobar [4]。非肉眼ICH起源于深脑结构(基底神经节,丘脑,脑干和深小脑),并且一直与高血压诱导的血管病[5,6]一致。与CAA相关的Lobar ICH和高血压LOBAR ICH之间的区分很复杂,但由于复发和痴呆症的风险而具有预后相关性,在CAA相关的Lobar ICh中,它们都显着高于[9-11]。LOBAR ICH(位于皮质区域或皮质和白质之间的连接处)主要与脑淀粉样血管病(CAA)有关,其中β-淀粉样蛋白在脑膜和内室血管内积累,导致脑部和内部血管的减少,并损害了平稳的细胞,并损害了肌张力的细胞。破裂和流血[7,8]。
ph: +82-041-925-1389电子邮件:yuseon.heo@samsung.com摘要移动设备有限的热预算几乎不允许全速使用高性能应用程序(AP)。但是,由于人工智能技术已迅速应用于移动设备,因此高速和大容量信号处理等需求正在不断增加。因此,控制AP芯片的热量生成成为关键因素,并且有必要开发基于重分配层(RDL)的风扇外套件(FOPKG)结构,该结构不会增加包装的厚度,同时最大程度地提高耗散量的厚度。CU柱的高度在产生可能施加厚的Fopkg的高度正在越来越高,并且在这项研究中,开发了世界上最厚的光孔材料(> 350UM厚度),以生产Cu Post(> 300UM厚度)。研究了光震鼠的光透射率的影响以及根据主聚合物的分子结构的溶解度的影响,以进行厚光构师的光刻过程。基于对这种厚的光质危行为的理解,开发了最佳的液体类型的光蛋白天抗事组成。通过光刻评估基于厚的光片特性,通过实施和CU电镀板进行深孔,以在AP产品设计施加的晶片中获得CPK 1.27的产率。关键字风扇外包装,厚度厚度光抗光毒师,Cu Post取决于对厚光构师的深入理解和实验,可以建立高级研究基础,以增加光孔厚度和更精细的CU后俯仰,以确保散热特征并提高建筑的自由度。
目的。利用现有的最佳等离子体诊断技术研究第 24 个太阳周期内平静太阳区域的纳米耀斑,以推导出它们在不同太阳活动水平下的能量分布和对日冕加热的贡献。方法。使用了太阳动力学观测站 (SDO) 上的大气成像组件 (AIA) 的极紫外滤光片。我们分析了 2011 年至 2018 年之间的 30 个 AIA / SDO 图像系列,每个图像系列以 12 秒的节奏覆盖了 400 ″ × 400 ″ 的平静太阳视野,持续超过两小时。使用差异发射测量 (DEM) 分析来推导每个像素的发射测量 (EM) 和温度演变。我们使用基于阈值的算法将纳米耀斑检测为 EM 增强,并从 DEM 观测中推导出它们的热能。结果。纳米耀斑能量分布遵循幂律,其陡度略有变化(α=2.02-2.47),但与太阳活动水平无关。所有数据集的综合纳米耀斑分布涵盖了事件能量的五个数量级(1024-1029尔格),幂律指数α=2.28±0.03。导出的平均能量通量为(3.7±1.6)×104尔格cm-2s-1,比日冕加热要求小一个数量级。我们发现导出的能量通量与太阳活动之间没有相关性。对空间分布的分析揭示了高能量通量(高达3×105尔格cm-2s-1)簇,周围是活动性较低的延伸区域。与来自日震和磁成像仪的磁图的比较表明,高活动性星团优先位于磁网络中和增强磁通密度区域上方。结论。陡峭的幂律斜率(α> 2)表明耀斑能量分布中的总能量由最小事件(即纳米耀斑)主导。我们证明,在宁静太阳中,纳米耀斑分布及其对日冕加热的贡献不会随太阳周期而变化。
摘要 空间大地测量已经彻底改变了我们对北安第斯山脉和西南加勒比海区域构造的认识。中美洲和南美洲 GPS 项目始于 1988 年,首次直接测量了汇聚板块边界的俯冲,并促成了全球民用 GPS 跟踪网络的建立。哥伦比亚是 1988 年实地活动的中心,哥伦比亚地质服务局在后勤、培训和人员方面的领导是中美洲和南美洲项目成功的关键。早期 GPS 结果显示北安第斯山脉向北移动、南加勒比海变形带汇聚、巴拿马-北安第斯山脉快速碰撞以及哥伦比亚-厄瓜多尔海沟的震间“锁定”的证据。从 2007 年开始,空间大地测量随着 GeoRED 项目向前迈出了一大步,GeoRED 是一个持续运行的全球导航卫星系统网络,目前拥有 108 个站点,提供了北安第斯块体运动的第一个精确的综合模型。 GeoRED 的最新发现包括北安第斯块体正以每年 8.6 毫米的速度向东北移动,东科迪勒拉山脉正以每年 4.3 毫米的速度受到挤压,巴拿马弧正以每年约 15-18 毫米的速度向东与北安第斯块体碰撞,而巴拿马-乔科碰撞可能是东科迪勒拉山脉大部分隆升的原因。新的全球导航卫星系统连续测量有助于量化南美洲西北部和加勒比海西南部的构造变形,包括哥伦比亚海沟、加勒比海边缘、东科迪勒拉山脉的东安第斯断层系统和哥伦比亚西北部巴拿马碰撞带的地震危险;以及哥伦比亚火山的变形。
2 Richard A Clarke 和 Robert K Knake,《网络战争:国家安全的下一个威胁及应对措施》(纽约:Ecco,2010 年);Joel Brenner,《脆弱的美国:数字间谍、犯罪和战争的新威胁矩阵》(纽约:企鹅出版社,2011 年);Lucas Kello,《网络革命的意义:理论和治国方略的危险》,《国际安全》第 38 卷,第 2 期(2013 年):7–40。2(2013 年):7–40。有关这三个特定主张的反驳,请参阅。Jon R. Lindsay,《震网与网络战争的局限性》,《安全研究》第 22 卷,第 3 期(2013 年):365–404。3 Myriam Dunn Cavelty,“网络恐怖——迫在眉睫的威胁还是幻影威胁?美国网络威胁辩论的框架”,《信息技术与政治杂志》第 4 期,第 1 期(2008 年):19–36;Jerry Brito 和 Tate Watkins,“热爱网络炸弹:网络安全政策中威胁膨胀的危险”,《哈佛国家安全杂志》第 3 期,第 1 期(2011 年):39–84;Sean Lawson,“超越网络末日:评估网络威胁框架中假设情景的局限性”,《信息技术与政治杂志》第 10 期,第 1 期(2011 年):39–841 (2013): 86– 103.4 Thomas Rid,“网络战争不会发生”,《战略研究杂志》第 35 期。5 (2012): 5–32; Adam P Liff,“网络战争:一种新的‘绝对武器’?网络战能力的扩散与国家间战争”,《战略研究杂志》第 35 期。3 (2012): 401–28; Erik Gartzke,“网络战争的神话:让网络空间战争重回现实”,《国际安全》第 38 期。2 (2013): 41–73; Jon R. Lindsay,《中国对网络安全的影响:虚构与摩擦》,《国际安全》第 39 卷,第 3 期。3(2014 年冬季):7–47;Brandon
在研究应用程序方面,3D打印为实现具有高结构控制的材料提供了许多有趣的途径。此外,对微型制造的需求不断增加,并且希望在(子)微米尺度上构造材料的愿望驱动了微型和纳米印刷技术的发展。在其中,两光子聚合(2pp)3D打印是一种直接激光写作(DLW)技术,可在100 nm范围内提供精美的空间分辨率。[7]然而,这种微型的作用是以减少可打印材料的选择为代价,通常是少数有机墨水和photosistists。[8-11]尽管取得了巨大进展,但仍有重大挑战。在特定的情况下,在单个微观印刷过程中,多种和不同材料(例如有机和无机材料)的整合和精确地点目前难以捉摸;一些示例包括通过沉积和/或电镀过程在光震抗菌中的纳米颗粒分散。[8,12,13]但是,这些方法不能对不同材料的定位进行微米空间控制,而这些材料的定位只有有限的可能选择范围。尽管如此,无机和有机,硬和软组件,动态和静态材料的组合将使许多新的研究方向(例如,将其用于超材料)。相反,具有预先微观结构控制的复杂2D和3D材料是粒子合成和组装领域的大量努力的核心。[14]此外,例如,对于微型机器人来说,设备的微型化可能要求印刷结构的不同部分执行不同的功能,例如驱动,传感或结合,因为它在较大的尺度上可以使用,或者可以简单地将多个功能组合在单个设备中。胶体合成路线提供了大量不同材料的颗粒,具有精致的形状和功能。然而,由于需要以非常微妙和精确的方式控制相互作用的必要性,因此它们在大规模结构中提出了问题,并且仅在少数情况下才能实现成功。[15,16]此外,
入围候选人将通过电子邮件/电话通知并邀请参加面试。参加面试不会获得任何 TA/DA 报酬。该职位立即可用。面试将于 2023 年 5 月/6 月举行。任命将与项目同时结束,纯属临时任命。选择将基于资格、经验和面试表现。NITK Surathkal 保留拒绝任何或所有申请的权利,无需说明任何理由。项目摘要:由于磨损、腐蚀和氧化导致表面退化,挑战日益增加,发电厂或飞机工业中使用的大多数工程部件都面临性能下降和产品设计寿命缩短等问题。对能够一次性解决许多问题的新型材料的需求是当务之急。如果说到锅炉或燃气轮机,涂层需要具有抗高温侵蚀、腐蚀和氧化性能。这主要是因为解决任何类型的表面退化都无助于应对挑战环境。众所周知,NiAl 合金具有高温性能。然而,关于它们作为热喷涂涂层的应用研究尚未详细探讨,尤其是当 NiAl 用 cBN 和 SiC 等硬质相增强时。NiAl 具有有序的晶体结构、低密度、高熔点、高硬度、高机械强度、高温腐蚀和耐磨性。另一方面,CBN 和 SiC 颗粒是基础。它们以高熔点、低密度和极高的硬度而闻名。它们具有高耐化学性、良好的高温强度、优异的抗热震性和优异的耐磨性。这些属性是解决表面退化问题的增强相的完美选择。因此,本提案重点关注使用 HVAF 和激光重熔技术开发以 CBN 和 SiC 为增强相的新型 NiAl 复合涂层。生产的涂层可用于保护发电厂的锅炉部件或修复某些飞机部件。NiAl 与 CBN 或 SiC 复合涂层将使用 HVAF 和激光重熔技术。将进行的主要实验是高温滑动磨损、侵蚀和氧化试验。将详细研究添加 cBN 和 SiC 将如何影响 NiAl 复合涂层的高温行为。
土星五号火箭可能已经消失 — — 但它永远不会被遗忘。毕竟,这是唯一一枚将人类送上月球表面的火箭。谈到土星五号,“强大”一词都不足以形容它。当那五个巨大的 F1 发动机点火并将巨大的火箭从发射台上推下来时,它以地震般的猛烈震动了地面。充其量,你可能会说这是一次受控爆炸。如果一个人不幸在距离发射台一英里以内,声波可以轻易粉碎他的骨骼。即使在更远的距离,声波也感觉像有人用拳头捶打你的胸膛。火焰是如此耀眼,很难不眯着眼睛看。而到了晚上,它照亮了天空,明亮得你可以轻松阅读报纸上的小字——距离发射场五十英里。我和许多参与火箭工作的工程师和技术人员交谈过。总的来说,他们都将土星五号的发射描述为一个“事件”。他们说没有什么能与之相比。它如此巨大,如此强大,甚至航天飞机的发射都相形见绌。对于那些亲眼目睹它的人来说,发射被描述为一种宗教体验。它就像闪电、雷声、地震、雪崩、迎面相撞的火车和全身抽搐的综合感觉,所有这些都包含在一个两分钟的时间段内。但对他们来说,这件事已经深深地刻在了他们的记忆中,似乎持续了一千年。如今,只有少数火箭专家有幸亲眼目睹土星五号升空的场景。但是现在,有了 Apogee Saturn V 套件的全新超大尺寸,您可以拥有人类最伟大的太空冒险的遗物。您实际上可以感受到成为这一体验的一部分的感觉。Apogee Saturn V 不仅仅是太空纪念品。当您看到这枚新火箭时,您会惊叹于它的大小和威严的气势。您的眼睛会紧盯着它,就像它对您施了某种催眠术一样。它需要你的关注,就像海军陆战队教官在你面前咆哮一样。看到它后,你会重温太空计划的辉煌岁月,以及因这一成就而涌现的自豪感
警告/注意事项/不良事件:该系统尚未针对孕妇、18 岁以下患者或 70 岁以上患者进行评估。该系统可能会受到心脏设备的影响或产生不利影响。强电磁干扰 (EMI) 源(例如来自电灼术、除颤/心脏复律、治疗性超声、射频 (RF)/微波消融或 MRI)可能会导致严重伤害、系统损坏或系统运行变化。EMI、姿势变化或其他活动可能会引起电击或震动感。接受抗凝治疗的患者术后并发症风险可能更大。将非美敦力组件与该系统一起使用可能会导致美敦力组件损坏、治疗失败或患者受伤。植入材料可能会引起过敏或免疫系统反应。如果可能,医生应在手术前识别和治疗任何感染。植入部位的感染几乎总是需要手术切除植入系统。导线可能会缠绕肠道或刺穿胃部,造成危及生命的阻塞或感染,需要立即就医,也可能需要手术。患者应避免进行可能对植入系统组件造成过度压力的活动(包括突然、过度或反复弯曲、扭曲、弹跳或拉伸,这些活动可能会导致组件断裂或移位)。与治疗、设备或程序相关的不良事件可能包括:感染、手术部位疼痛、设备组件可能磨损皮肤、神经刺激器部位淤青、出血、治疗效果丧失、刺激出现不良变化(描述为颠簸、电击或灼热感)、胃肠道症状和胃肠道并发症(导线可能会刺穿胃部,或者设备组件可能会缠绕或阻塞其他内脏器官,需要手术)。系统可能会因电池耗尽或机械或电气问题而停止运行。任何这些情况都可能需要额外的手术或导致您的症状复发。