我们考虑了在二维中的拓扑顺序的范式可解的模型,即基塔耶夫的hon-eycomb hamiltonian,并将其转变为一个仅测量的动力学,该动力学由两qubit键键操作员的随机调查组成。我们找到了一个纠缠相图,在某些方面与哈密顿问题的相似,而在其他方面则在质量上有所不同。主要测量一种类型的键时,我们发现区域法纠缠的相位,可以在系统大小的时间指数上保护两个拓扑量子(在圆环上)。这将最近提供的Floquet代码的概念泛滥,其中逻辑量子位是通过时间周期测量时间表动态生成的,它是随机设置的。当所有类型的债券以可比的频率测量时,我们发现一个临界阶段对违反该区域的键,该阶段将其与哈密顿量对应物区分开来。临界阶段具有与三方共同信息所诊断的相同拓扑Qubits相同的集合,但仅在系统大小的时间多项式中保护它们。此外,我们观察到了混合状态的动态纯化的异常行为,在后期,动态指数Z = 1 /2(一种通过测量实现的超级焊接动力学)的特征。
1。简介SIOS是一个在Svalbard北极群岛及其周围的研究兴趣和基础设施的研究机构的国际联盟。在SIO内,研究人员通过共享数据和研究基础架构来建立一个有效的观察系统,该系统着重于对参数的长期监控,这些参数对于在全球环境变化的背景下对北极很重要。SIOS经过三年的临时阶段(2014年11月至2018年1月)和四年的准备阶段(2010年10月至2014年11月),于2018年1月进入了运营阶段。目前,该财团由来自10个国家 /地区的28个机构组成。SIOS已获得资金来支持中央枢纽SIOS知识中心,直到2026年底。SIO的策略是基于愿景,任务陈述和三个行动支柱。一个关键要素是Sios Science Wheel的概念,该概念将大多数活动与开发观测系统的时间周期联系起来。从操作阶段开始,SIO的策略或多或少都没有改变。但是,自2018年以来,操作环境发生了变化。例如,SIO不再在ESFRI路线图上,而大流行尤其挑战了我们寻找新的工作条件。在2021年期间,启动了该策略的过程。SIOS知识中心已经收集了会员机构以及各种事件和问卷中的个人研究人员的信息和反馈。这些以及在运营阶段的前四年中学到的经验教训已被用来形成SIOS策略2026。
1. 使用灯泡(电法)验证斯蒂芬辐射定律。2. 研究扭矩传感器的性能。3. 通过测量感应电压随时间的变化来验证法拉第和楞次感应定律。4. 研究磁场随亥姆霍兹排列中成对线圈沿载流线圈轴线位置的变化。5. 通过磁控管法确定电子的𝑒/𝑚(比电荷)。6. 使用真空管二极管 EZ-81 确定斯蒂芬常数。7. 研究线性可变差动变压器 (LVDT) 的特性。8. 表面张力 9. 验证斯托克斯定律 10. 使用应变计传感器测量压力 11. LDR 特性。12. 热膨胀。13. 通过测量辐射确定普朗克常数。 14. 研究耦合摆的正常模式和共振。15. 确定耦合摆中耦合弹簧的弹簧常数。16. 计算耦合摆的时间周期(𝑇 0 、𝑇 1 、𝑇 𝐵 和 𝜈 𝐵,耦合度)17. 用 Quincke 法确定顺磁性材料的质量磁化率 18. 通过测量固定光谱范围内的辐射确定普朗克常数的值。19. 利用牛顿环确定钠光的波长。20. 利用密立根油滴实验确定电子电荷。21. 研究 LDR、LED、太阳能电池、光电晶体管的 VI 特性。22. 四分之一波片。23. 马吕斯定律。24. 布儒斯特角。25. 单缝衍射。 26.双缝衍射。
尽管数十年的研究已经在物理推理中分类了惊人的错误,但对直觉物理的兴趣复兴揭示了人类成功预测物理场景展开的非凡能力。旨在解决这些相反结果的主要解释是,物理推理招募了一种通用机制,可可靠地对身体场景进行建模(解释最近的成功),但过度人为的任务或贫穷而生态无效的刺激可以产生较差的绩效(核算早期失败)。但是,即使在自然主义背景下,也可能会有一些任务会持续构成身体的理解?在这里,我们通过引入一项新的直觉物理任务来探讨这个问题:评估结和缠结的强度。结之间无处不在的文化和时间周期,并且正确评估它们通常会拼写出安全性和危险之间的差异。尽管如此,5个实验表明,观察者在结之间的强度差异也很大。在一系列两种两种强制选择的任务中,观察者查看了各种简单的“弯曲”(结着两条线的结),并决定这需要更多的力才能撤消。尽管这些结的强度是有据可查的,但观察者的判断完全无法反映这些区别,在自然主义照片(E1),理想化的效果图(E2),动态视频(E3)中,甚至伴随着结的策划图(E3)。这些结果在物理推理中暴露了一个盲点,对场景理解的通用理论施加了新的约束。此外,尽管有准确地识别结之间的拓扑差异(E5),但这些失败仍然存在。换句话说,即使观察者正确地感知了结的基础结构,他们也无法正确判断其力量。
关于能量循环的开创性研究表明,在没有温度偏见的情况下,如何产生能量频道[1-13]。这种原理可以可能应用于建立纳米级的能量矩形[6]。从理论的角度来看,能量传输通常与声子有关,但是与单个颗粒相比,这些集体激发更难以操纵[6,14]。先前的研究利用了非线性相互作用[4],Athermal Baths [2],绝热调制[5]或量子浮球系统[15]提供的机会。使用奇偶校验的超材料和非平衡强迫的组合,我们最近的工作[16]发现了新的矩形原理,这些原理表现出网络系统中站点之间的定向能量流。与许多以前的研究集中在两个直接连接的终端之间的运输[4]或通过不对称段[2-4]之间,我们的设置将所有节点及其连接置于平等的基础上[11-13],从而使将直接拟合研究扩展到具有复杂拓扑和差异的网络。基于我们最近的工作[16],在这里我们研究了增加的时间周期调制的效果。我们的模型系统是一类春季网络,每个质量都受到时间调节的洛伦兹力[17,18],并浸入活性浴中[19]。使用数值计算,我们表明时间调制系统能够纠正节点和浴室之间的能量频率。换句话说,尽管没有温度偏见,但我们的模型仍可以充当多体能泵。作为比较,我们以前的未调制系统[16]支持站点之间的净能量传输,但不支持站点和浴室之间的净能量传输。该调制会扩大工具箱,以操纵复杂网络中的能量传输。
关于能量循环的开创性研究表明,在没有温度偏见的情况下,如何产生能量流[1-13]。这种原理可以可能应用于建立纳米级的能量矩形[6]。从理论的角度来看,能量传输通常与声子相关,但是与单个部分相比,这些集体激发更难以操纵[6,14]。先前的研究利用了非线性相互作用[4],Athermal Baths [2],绝热调制[5]或量子浮球系统[15]提供的机会。使用奇偶校验的超材料和非平衡构成的结合,我们最近的工作[16]揭示了新的矩形原理,这些原理表现为网络系统中站点之间的定向能量流。与许多以前的研究集中在两个直接连接的终端之间的运输[4]或通过不对称段[2-4]不同,我们的设置将所有节点及其连接置于均等的基础上[11-13],因此使将直径研究扩展到具有复杂拓扑和差异的网络。基于我们最近的工作[16],在这里我们研究了增加的时间周期调制的效果。我们的模型系统是一类春季网络,每个质量都受到时间调节的洛伦兹力[17,18],并浸入活性浴中[19]。使用数值计算,我们表明,时间调制的系统能够纠正节点和浴室之间的能量漏。换句话说,尽管没有温度偏见,但我们的模型仍可以充当多体能泵。调制因此扩展了工具 -作为比较,我们以前的未调制系统[16]支持站点之间的净能量传输,而不是在地点和浴室之间进行净能传递。
摘要全球对螃蟹的需求,再加上对自然种群的威胁越来越多,就需要提出圈养圈养育种计划。为了实现这一目标,至关重要的是要对其生命周期的关键方面进行全面的了解。这项研究代表了红树林螃蟹,Ucides concidentalis的早期全面表征。更重要的是,利用落叶显微镜,我们研究了六种不同的微藻饮食对幼虫阶段进展及其随后的生存的影响。U. Occidentalis的胚胎发育在14天内展开,在八个不同的阶段进行系统地详细介绍,每一个阶段都以胚胎的逐步出现及其相关的附属物的逐步出现。值得注意的是,在产卵之前,心率增加了。产卵后,在胚胎成功破裂绒毛之前,短暂的10-15分钟经过。幼虫的发育经过了五个Zoeal阶段(ZI – ZV)的分割,跨越了15天的持续时间,等效的时间周期涵盖了巨型阶段,直到达成了第一个少年板条板。阶段之间的每个过渡都被一个误会事件预示了。尽管我们的观察证实了对评估的微藻的摄入和消化,但很明显,用旋转液和盐水虾补充饮食对于优化摩擦时期,从而提高生存率至关重要。具体来说,摄入并消化到Zoea V阶段的硅藻chaetoceros graciris和Chaetoceros Muelleri。相比之下,微藻Tetraselmis maculata和Rhodomonas salina在经历摄入和消化的同时,只能维持幼虫,直到Zoea III阶段。我们研究的结果肯定了U. Occidentalis Crablet在实验室环境中的生存能力,从而将该物种的潜在包括作为宝贵的水产养殖产品。这项努力有望为野生美国人口的保护和增强做出贡献。
非对称随机电报信号是在两个能级 y = y 1 和 y = y 2 之间随机切换的信号。它们是对各种物理系统进行测量的常见结果,包括细胞中的离子通道 [1]、晶体管 [2, 3] 等半导体器件、量子点 [4] 和光电器件 [5]、高温超导体 [6] 和单库珀对盒 [7],也是 1 /f 噪声的组成部分 [8]。从 1 (2) 到 2 (1) 的转换率 Γ 1(2) 是描述底层系统动态的可访问参数,通常需要从测量的时间序列中提取它们。最直接的方法是按某个速率 fs 对时域信号进行采样,将其分为状态 1 和 2 中的各一个周期(图 1(a)),对停留时间 τ 1(2) 进行直方图绘制,并根据得到的分布拟合 ke − Γ 1(2) τ 1(2)。但是,噪声和有限的测量带宽的存在会导致测得的统计数据不能准确地代表底层系统。问题有两个方面:一个状态下的噪声可能导致检测到另一个状态下的错误时间周期(图 1(b)),而有限的带宽意味着看不到另一个状态的真正短周期偏移(图 1(c))。后者还会将错过的周期两侧的两个周期连接在一起,导致出现错误的长周期。已经提出了多种解决该问题的方法。一些研究侧重于优化将信号划分为状态 1 和 2 的阈值 [9]。Naaman 和 Aumentado 将检测器建模为一个单独的过程 [10],并对测量的速率进行校正。其他技术包括小波边缘检测 [11]、自相关方法 [12]、互相关方法 [13] 和信号概率密度函数分析 [14, 15]。在本文中,我们证明了循环神经网络可用于从嘈杂、带宽受限的随机电报信号中提取底层速率。神经网络 (NN) 包括一个输入层,其中包含
标准是俄罗斯历史的阶段。历史事件对当今几代人的价值观产生了重大影响。因此,年长的千禧一代出生在苏联解体期间,年轻的“希腊人”出现在政治更加稳定的时期,但却陷入了2000年代的危机和互联网繁荣之中。因此,对于千禧一代的年长代表来说,主要价值观之一是乐观,这是改革时代的特征。年轻的千禧一代出生于 2000 年代初,因此他们充满自信并且精通技术。基于历史原理,叶夫根尼娅·沙米斯(Evgenia Shamis)和阿列克谢·安蒂波夫(Alexey Antipov)在某种程度上改变了千禧一代的年龄界限——在俄罗斯版的世代理论中,他们被指定为1983年至2003年这一时期。心理科学博士 Jean Twenge 25 年来一直在研究“希腊人”和“Zets”之间的代际特征和差异。她的第一部作品之一是《自拍一代》一书,作者在书中展示了她自己对美国学生的研究结果 [8.p.16],非常关注她称之为“iGen”的青少年一代。Twenge 认为千禧一代和下一代之间的主要区别在于他们如何看待周围的世界以及他们如何度过空闲时间。然而,并非所有专家都支持将青年分为两代的想法,也没有看到老年青年和青少年的消费过程存在差异[7]。特别是,俄罗斯现代媒体消费研究者 D.M. Vyugina 并没有将新一代分为 Y 和 Z,而是使用了“数字青年”或“数字原住民”等通用术语[1]。在本文中,我们坚持美国模式,因为我们认为 20 年的时间周期足以进行代际更替。我们认为 Y 一代出生于 1983 年至 2000 年之间,而 Z 一代则认为出生于 21 世纪 - 2001 年至 2020 年。作为本研究的一部分,我们将比较这些功能
在数字量子模拟中,量子计算机充当难以用传统方法预测的系统的通用模拟器。然而,该领域的目标不仅仅是简单地用一个系统模仿另一个系统:在将模型的哈密顿量映射到量子比特上之后,采用量子算法提取其光谱和特征态。这种算法中可能最复杂的是量子相位估计,它允许人们通过对模拟时间演化的傅里叶分析(在模型哈密顿量下)投射到光谱特征态。然而,尽管概念简单,量子相位估计在技术层面上具有挑战性。它的要求不仅超出了当前硬件的能力,而且它很可能在未来带来技术挑战。部分问题在于时间演化无法精确模拟,而通常必须近似。正如 [ 1 ] 中最初所建议的那样,这可以通过 Trotterization 实现,这意味着模拟器被设计为在精确时间演化的频闪片段中演化。演化的时间周期越短,近似值越精确,但量子相位估计对于较长的时间演化具有更好的分辨率 [2,3]。该算法还需要一个额外的估计器量子比特寄存器来耦合到 Trotterization 时间演化中的每个片段,这可能要求量子计算机内部进行非局部操作。不过,有更先进的方法可以取代相位估计算法中的 Trotterization。在量子比特化 [4] 中,模拟器被一定数量的量子比特扩展。时间演化随后被一个幺正所取代,该幺正位于扩展的某个子空间中,充当模拟器量子比特的哈密顿量。由于幺正描述了该子空间外的旋转,因此旋转角度(哈密顿量特征值的函数)可以通过相位估计程序读出。量子比特化的吸引力在于它不涉及哈密顿量的任何近似;然而,它通常需要更高级的量子操作,比如 Toffoli 门 [ 5 ]。当人们试图将额外量子比特的数量保持在