Loading...
机构名称:
¥ 1.0

在数字量子模拟中,量子计算机充当难以用传统方法预测的系统的通用模拟器。然而,该领域的目标不仅仅是简单地用一个系统模仿另一个系统:在将模型的哈密顿量映射到量子比特上之后,采用量子算法提取其光谱和特征态。这种算法中可能最复杂的是量子相位估计,它允许人们通过对模拟时间演化的傅里叶分析(在模型哈密顿量下)投射到光谱特征态。然而,尽管概念简单,量子相位估计在技术层面上具有挑战性。它的要求不仅超出了当前硬件的能力,而且它很可能在未来带来技术挑战。部分问题在于时间演化无法精确模拟,而通常必须近似。正如 [ 1 ] 中最初所建议的那样,这可以通过 Trotterization 实现,这意味着模拟器被设计为在精确时间演化的频闪片段中演化。演化的时间周期越短,近似值越精确,但量子相位估计对于较长的时间演化具有更好的分辨率 [2,3]。该算法还需要一个额外的估计器量子比特寄存器来耦合到 Trotterization 时间演化中的每个片段,这可能要求量子计算机内部进行非局部操作。不过,有更先进的方法可以取代相位估计算法中的 Trotterization。在量子比特化 [4] 中,模拟器被一定数量的量子比特扩展。时间演化随后被一个幺正所取代,该幺正位于扩展的某个子空间中,充当模拟器量子比特的哈密顿量。由于幺正描述了该子空间外的旋转,因此旋转角度(哈密顿量特征值的函数)可以通过相位估计程序读出。量子比特化的吸引力在于它不涉及哈密顿量的任何近似;然而,它通常需要更高级的量子操作,比如 Toffoli 门 [ 5 ]。当人们试图将额外量子比特的数量保持在

在没有 Toffoli 门的情况下估计量子模拟中的精确能量

在没有 Toffoli 门的情况下估计量子模拟中的精确能量PDF文件第1页

在没有 Toffoli 门的情况下估计量子模拟中的精确能量PDF文件第2页

在没有 Toffoli 门的情况下估计量子模拟中的精确能量PDF文件第3页

在没有 Toffoli 门的情况下估计量子模拟中的精确能量PDF文件第4页

在没有 Toffoli 门的情况下估计量子模拟中的精确能量PDF文件第5页