摘要:电力电子系统对现代社会影响巨大。它们的应用旨在通过最大限度地减少工业化对环境的负面影响(如全球变暖效应和温室气体排放)来实现更可持续的未来。基于宽带隙 (WBG) 材料的功率器件有可能在能源效率和工作方面实现范式转变,而这些转变与基于成熟硅 (Si) 的器件相比毫无二致。氮化镓 (GaN) 和碳化硅 (SiC) 被视为最有前途的 WBG 材料之一,它们可以大大超越成熟 Si 开关器件的性能极限。基于 WBG 的功率器件可以在更高的开关频率下实现快速开关,同时降低功率损耗,因此可以开发高功率密度和高效率的功率转换器。本文回顾了流行的 SiC 和 GaN 功率器件,讨论了相关的优点和挑战,最后介绍了它们在电力电子中的应用。
本报告是由美国政府某个机构资助的工作报告。美国政府、其任何机构及其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,或承担任何法律责任或义务,亦不保证其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定的商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或偏爱。本文表达的作者的观点和意见不一定表明或反映美国政府或其任何机构的观点和意见。
“ ctusbdu(bmmjvn ojusjef ijhi fmfduspo npcjmjuz usbotjtupst(b/)&。5t bsf bu b qpjou pg sbqje pg sbqje hspxui hspxui hspxui hspxui i uif tuboebse(b/ ifufsptuvsft sfnbjo vopqujnj [fe gps nbyjnvn qfsgpsnbodf'ps uijt sfbtpo xf qspqptf qspqptf uif tijgu/ mbujops qspwf uif pvuqvu qpxfs boe uifsnbm nbobhfnfu pg *** ojusjefbnqmjàfst#fzpoe jnqspwmfonphu jmm jmm jmm bmmpx bmmpx bmmpx Ojdt 4ubuf pg uif dvssfou q diboofm'&5tnbuvsfàmufsjfdjpmwjbohmmz xjui ufhsbufe xjui xjui xjui bo“ m/(b/)& usjef fmfduspojdt nbz nbyjnj [f uifjhis qpfndpwmm ijhi nnvojdbujpo boe ijhi ijhi qpxfs mphjd bqqmjdbujpot
关于国际能源署《节能终端使用设备实施协议》(4E):节能终端使用设备技术合作计划(4E TCP)自 2008 年以来一直致力于支持各国政府协调有效的能源效率政策。14 个国家和一个地区已联合起来建立 4E TCP 平台,以交流技术和政策信息,重点是增加高效终端使用设备的生产和贸易。然而,4E TCP 不仅仅是一个信息共享论坛:它汇集了各种项目的资源和专业知识,旨在满足参与国政府的政策需求。4E 的成员发现这是对稀缺资金的有效利用,其成果比单个司法管辖区所能实现的更为全面和权威。4E TCP 是在国际能源署(IEA)的支持下成立的,是一个功能和法律上独立的机构。 4E TCP 的现有成员为:澳大利亚、奥地利、加拿大、中国、丹麦、欧盟委员会、法国、日本、韩国、荷兰、新西兰、瑞士、瑞典、英国和美国。
自1992年引入以来,[l]微型遇到激光吸引了Sigmfkant的注意,因为高Q光源具有非常强烈的光学限制。他们的激光模式近似窃窃私语模式,这些模式取决于半导体磁盘弯曲边界处的总内部反射。在这封信中,我们描述了基于光子带隙晶体的Bragg反射,而不是半导体层之间的大介电介质不连续性和半导体层和Sur-Rounder-Rounder-Rounder-Rounder-Rounder-Rounder-Rounding低索引介质。[2]低语画廊模式的约束在很大程度上取决于磁盘边界的曲率。使用光子带隙允许横向填充和设备尺寸解耦。
Veritas Technologies是安全多云数据管理的领导者。超过80,000个客户(包括财富100强的91%)依靠Veritas,以帮助确保其数据的保护,可恢复性和遵守情况。veritas以大规模的可靠性而闻名,这为客户所需的弹性提供了与网络攻击威胁的中断,例如勒索软件。没有其他供应商能够通过单个统一的方法来匹配Veritas执行的能力,并支持800多个数据源,100多个操作系统和1,400多个存储目标。由云量表技术提供支持,Veritas今天正在为自动数据管理的策略提供,从而降低了运营开销,同时又提供了更大的价值。在www.veritas.com上了解更多信息。在@veritastechllc上关注我们。
需求:•介电层带隙能大于底物(〜10 k b t或更多)•〜1至〜100 nm的厚度可变厚度•高度绝缘材料具有低意外掺杂浓度的高度绝缘材料•高质量的界面无陷阱和缺陷
如今,基于石英谐振器的参考振荡器的工作频率被限制在几百兆赫。从这样的参考振荡器中获取千兆赫范围的信号需要倍频或频率合成。然而,倍频过程会根据倍频系数的 20log 10 增加输出信号的相位噪声,同时也会增加电路的复杂性。从这个意义上讲,直接在毫米 (mm-) 波段的基频上产生 LO 信号是有利的。然而,这需要一个高质量 (Q-) 因子谐振器,最好在几千兆赫下工作。采用金属腔的传统无源谐振器的 Q 因子受到金属中的电阻损耗的限制。或者,基于陶瓷谐振器的直接在基频下工作的振荡器提供平均相位噪声,并且通常在 25 GHz 以上不可用。
背景 美国能源部的使命是通过变革性的科学和技术解决方案解决美国的能源、环境和核挑战,从而确保美国的安全和繁荣。 1 AMMTO 的使命是激励人们并加速创新,以改造材料和制造业,以适应美国的能源未来。 AMMTO 计划支持下一代材料和创新制造技术的研究、开发和演示,以提高美国的工业竞争力和能源弹性。 电力电子对于美国关键基础设施中电力的转换和控制至关重要。随着这些基础设施(包括电网综合电力、工业制造、交通运输以及数字网络和通信)带来更多创新技术以满足不断变化的市场需求并提高能源安全性和弹性,它也对电力电子技术提出了更高的性能要求。几十年来,人们一直依赖硅电力电子来满足基础设施的电力转换和控制需求,但这些日益增强的性能要求已经超出了传统硅电力电子所能提供的范围。宽带隙半导体 (WBG) 电力电子提供了一种替代方案,有可能满足美国基础设施在 21 世纪不断变化的需求。为了实现这一潜力,整个PE系统都需要进行技术创新——在材料层面、在使这些高性能材料发挥作用的设备中、在将这些设备构建到最终用途应用中的包装中。