摘要:严重依赖资源的交通和恶劣的生活条件(如果没有适当的栖息地,人类就无法生存)阻碍了人类在月球和火星上建立殖民地。由于没有大气层,月球或火星上的潜在栖息地需要厚实而坚固的结构,以承受人工产生的内部压力、潜在的流星体撞击和大部分入射辐射。克服上述挑战的一种有希望的方法是使用增材制造 (AM),也称为 3D 打印。与传统的建造技术相比,它允许以最少的材料操作从丰富的材料中生产结构。除了建造栖息地本身,3D 打印还可用于制造对人类有用的各种工具。通过将工具熔化回原材料,还可以回收用过的工具来弥补损坏或无法正常工作的设备。虽然太空 3D 打印在纸面上听起来不错,但对于打印辅助太空任务,仍需要考虑各种挑战。太空中的条件与地球上的条件截然不同。这包括失重、极小压力和温度快速变化等因素。本文介绍了增材制造在太空中的应用前景。目前有多种 3D 打印技术可供选择,根据可使用的材料、最终产品的可能形状以及材料凝固的方式而有所不同。为了将人类送往其他天体,重要的是要考虑他们的需求并能够满足他们。本文还概述了潜在太空栖息地的要求以及考虑在太空中使用增材制造时出现的挑战。最后,回顾了 3D 打印月球和火星栖息地及较小物品的最新研究进展。
依赖温度的生物生产力控制硅酸盐风化,从而扩展了地球的潜在宜居时间。模型和理论考虑表明,地球样系外行星上的失控温室通常伴随着大气中的H 2 O和CO 2的急剧增加,这可能会随着即将到来的空间望远镜的生成而观察到。如果活性生物圈与地球类似地扩展了外部行星的可居住时间潘,则观察可居住区内边缘附近的系外行星的大气光谱可以使人深入了解地球是否居住。在这里,我们为地球状停滞的行星探索了这个想法。我们发现,尽管地幔减少,但表面生物圈将行星的可居住时间延伸约1 Gyr,对于更多的氧化条件,生物学上增强的风化速率越来越多,通过将CO 2的CO 2的供应率提高到大气中。从观察上,在宜居区的内边缘附近的大气CO 2中所产生的差异在具有活跃风化的生物行星和经历了失控的温室的生物行星之间可以区分。在有效的水文循环中,提高的生物生产力也导致JWST可观察到的CH 4生物签名。随着行星无法居住,H 2 O红外吸收带占主导地位,但是4.3- µm CO 2带仍然是CO 2丰度的清晰窗口。总而言之,虽然生命对碳酸盐 - 硅酸盐循环的作用在类似地球的停滞范围的大气谱中留下了记录,但尤其需要未来的工作才能确定构造状态和外部球星的组成,并推动下一代空间望远镜的发展。
摘要 在拥挤的低地球轨道 (LEO) 区域,对空间碎片的检测、跟踪和分类需求日益增加。检测碎片的一种方法可能是使用基于空间的无源双基地雷达 (PBR)。STRATHcube 项目提议将立方体卫星发射到 LEO 作为 PBR 技术演示器,在那里将测试斯特拉斯克莱德大学开发的用于检测空间碎片的信号处理算法。该概念涉及在低空轨道上运行的立方体卫星上的雷达接收器和天线,以检测在高空轨道上运行的运行卫星发射的无线电信号。这些信号可能已被在运行卫星和立方体卫星之间运行的物体修改,因此表明存在碎片。本文将介绍将 PBR 技术集成到立方体卫星上作为 STRATHcube 任务的有效载荷,并讨论由于小型平台的限制而面临的挑战。研究了使用定制的 3D 天线和现成的贴片天线作为有效载荷的设计选项。完成了每个选项的高级设计,以评估它们对可跟踪碎片大小的能力并确定其质量和功率参数。在系统层面进行了广泛的权衡分析,以缩小立方体卫星平台上 PBR 有效载荷的选项范围后,确定贴片天线选项是促进立方体卫星上实验的最佳方式,因为它体积小、质量大。STRATHcube 任务的完整设计将使 PBR 技术在轨演示成为可能,如果成功,将为太空界提供一种比传统地面跟踪更便宜、更方便的替代方案。这种方法将向业界证明,业界可以使用这种方法在未来更大规模地实施。
摘要 —随着即将到来的第六代 (6G) 中通过空中和太空飞行器实现的非地面网络 (NTN) 的发展,海洋物联网 (IoT) 系统得到了大幅发展,从而有助于环境保护、军事侦察和海上运输。然而,由于气候变化不可预测以及海上网络的极端信道条件,有效可靠地收集和计算大量海上数据具有挑战性。在本文中,我们提出了一种用于海洋物联网系统的空间-空-海一体化网络中的混合低地球轨道 (LEO) 和无人机 (UAV) 边缘计算方法。具体而言,安装在无人机和 LEO 卫星上的两种边缘服务器具有计算能力,可实时利用从海洋物联网传感器收集的大量数据。我们的系统旨在通过联合优化通信和计算的比特分配以及在延迟、能量预算和操作约束下的无人机路径规划,最大限度地降低电池受限无人机的总能耗。为了实现可用性和实用性,根据低地球轨道 (LEO) 卫星的可达性,利用逐次凸近似 (SCA) 策略,为三种不同情况开发了所提出的方法,“始终开启”、“始终关闭”和“中间断开”。通过数值结果,我们验证了与仅为无人机的比特分配或轨迹设计的部分优化方案相比,通过联合优化比特分配和无人机路径规划,可以在所有低地球轨道可达性情况下节省大量能源。索引词——海洋网络、物联网 (IoT)、边缘计算、低地球轨道 (LEO) 卫星、无人机 (UAV)、逐次凸近似 (SCA)。
摘要 - 本文调查了最近的进步,并讨论了在极端地下环境中同时定位和地图(SLAM)的未来机会。在地下环境中大满贯,从地球上的隧道,洞穴和人造地下结构到火星上的熔岩管,是一系列应用的关键推动剂,例如行星勘探,搜索和救援,灾难响应,灾难反应和自动化采矿等。在地下环境中大满贯最近受到了极大的关注,这要归功于DARPA Subterranean(Subt)挑战,这是一项全球机器人竞赛,旨在在自动企业探索和复杂地下环境中进行自主机器人探索和映射。本文通过讨论参加了为期三年的小竞赛的六支球队的不同大满贯策略和成果,报道了地下大满贯的现状。尤其是本文有四个主要目标。首先,我们回顾了团队采用的算法,架构和系统;特别强调以激光雷达为中心的SLAM解决方案(几乎所有竞争中所有团队的首选方法),异类的多机器人操作(包括空中机器人和地面机器人)以及现实世界的地下操作(从存在晦涩的人到需要处理严格的计算约束的需要)。我们不会回避讨论不同Subt Slam系统背后的“肮脏细节”,这些系统通常会从技术论文中省略。第三,我们概述了我们认为是基本的开放问题,这些问题可能需要进一步的研究才能突破。第二,我们通过强调当前的SLAM系统的可能性以及我们认为与某些良好的系统工程有关的范围来讨论领域的成熟度。最后,我们提供了在SubT挑战和相关工作期间生产的开源SLAM实现和数据集的列表,并构成了研究人员和从业人员的有用资源。
上下文。了解金星原始大气中的氢含量对于理解塑造其大气进化的流体动力逃生过程至关重要。氢来自两个主要来源:来自太阳星云和水蒸气(H 2 O)的分子氢(H 2)。这些来源的精确比例仍然不确定,从而导致有关金星大气历史的不同假设。但是,尚未对这些来源比例的参数空间进行系统的探索。目标。这项研究旨在通过对早期大气逃生场景进行广泛的数值模拟来限制金星原始大气中的氢含量及其来源。方法。我们开发了一种改进的能量限制的流体动力逃生模型,该模型与1D辐射感染的Equi-Liberium大气模型集成在一起,以模拟金星上的早期大气逃生。使用当前金星大气中的NE和AR的同位素数据,我们限制了星云衍生和脱气的衍生氢的贡献。我们的模拟探索了超过500 000个场景,改变了最初的H 2和H 2 O组成,并考虑了不同的太阳极端紫外线(EUV)辐射条件。结果。我们的结果基于20 ne/ 22 ne,36 Ar/ 38 ar和20 ne/ 36 ar的同位素比在金星的大气中观察到的,这表明原始大气含水量仅限于h 2(0.0004 wt%)的0.01海洋等效物,而小于1.4 h 2 o.4海洋等效于h 2 o. div> div> div> div> div> div> div div> div> div div。这表明,如果维纳斯曾经有富含氢的主要气氛,那么它在形成其次要的H 2 O富含气氛之前大部分都是丢失的。此外,我们的方法可以应用于限制其他陆地行星的原始大气组成,从而为其进化史提供了见解。
空间领域多元化:开发微重力生物研究技术 Sarah Kessans 博士,坎特伯雷大学产品设计学院讲师 sarah.kessans@canterbury.ac.nz 目前全球空间经济价值接近 4000 亿美元,预测者估计未来 20 年该领域的增长将达到 1-3 万亿美元。目前,通信和地球观测卫星以及将它们送入轨道的运载火箭主导着该行业。随着发射频率的增加和小型卫星相关成本的下降,利用空间进行更广泛应用的机会已经打开。在过去的二十年里,国际空间站 (ISS) 提供了一个微重力平台,用于进行数千项研究实验,研究新材料、燃料、先进机器人、植物生长、微生物学、人体生理学和一系列其他科学主题。在 ISS 的独特环境中进行的研究带来了临床生物医学应用、创新制造能力和地球上不可能实现的药物开发。然而,进入国际空间站非常困难,成本高昂,空间和机组人员资源有限,发射实验的准备时间也很长。小型卫星技术的进步使得为商业和学术研究应用提供更方便、更经济高效的平台成为可能。新西兰拥有独特的优势,可以利用其制造能力和频繁的国内发射服务来开展世界领先的微重力研究,支持航天工业以及我们高等院校、皇家研究机构和商业行业的广泛知识和技术能力。通过利用立方体卫星和其他小型卫星上的微重力研究设施,我们的科学家和工程师将有机会促进一系列行业的尖端太空研究。在这次演讲中,莎拉将讨论她和她的团队如何开发太空生物研究技术,为新西兰的航天部门提供宝贵的新机会,同时为生物医学和初级部门创造解决方案。
北斗卫星导航系统是国家重要的空间基础设施,可为各类用户提供高精度、全天候的定位、导航和授时服务,对导航定位服务精度、信号连续性、系统可用性等有很高的要求(刘建军等,2021)。综合考虑全球覆盖范围、应用价值和成本,国际上各主要全球导航卫星系统一般采用高度20 000km左右的中圆轨道。北斗卫星轨道主要包括倾角0°和55°的中圆轨道、地球同步轨道和倾斜地球同步轨道(夏立,2021;Morley等,2016),这些轨道位于外层地球辐射带的中心或外侧。太阳活动可以诱发空间环境的动态变化和卫星异常,包括充放电效应、单粒子效应和总剂量效应等。 NOAA/SEC从1984年至1992年共记录到954次GPS在轨异常,其中大部分是由单粒子效应和充放电效应引起的。美国GPS卫星太阳能电池阵的退化速度比预想的要快。研究表明,除了粒子辐射的位移损伤外,放电效应强化的太阳能电池阵表面污染应是一个重要诱因。欧洲GIOVE-A卫星上的OBC386计算机在2012年3月的太阳风暴中受干扰的概率是正常卫星的10倍。北斗二号的992次在轨异常中,疑似由充放电和单粒子效应引起的卫星异常约占80%。可见,运行在中高轨道的卫星易受空间环境影响,但缺乏对轨道辐射环境的监测,限制了我们对空间环境分布及其变化机制的认识。通过搭载辐射环境及影响监测探测器于导航卫星上,可充分利用轨道分布均匀、卫星数量多的优势,对中高轨道空间辐射分布及扰动进行全面监测,为中高轨道空间辐射环境监测提供支撑。
摘要 本文提出了一种新的量子密钥分发(QKD)协议,即基于伪随机基纠缠光子的 QKD(PRB-EPQKD)协议。最新协议主要关注三个属性,包括协议的安全性、安全密钥大小和合法通信用户(Alice 和 Bob)之间的最大通信距离。为了实现这一点,我们首先考虑一个位于低地球轨道(LEO)型卫星上的自发参数向下(SPDC)光子源,该光子源能够产生并向 Alice 和 Bob 分发纠缠光子对。其次,我们假设 Alice 和 Bob 的光子状态测量基是通过伪随机数生成器(PRNG)相同生成的,即量子逻辑映射(QLM)。最后,我们还假设除了光子状态之外,Alice 和 Bob 还故意在每个脉冲上共享一组强度随机的诱饵状态,目的是检测窃听者(Eve)的存在。基于这些考虑,我们利用 Gottesman-Lo- Lutkenhaus-Preskill (GLLP) 公式评估了两种不同实现(即基于非诱饵状态和无限主动诱饵状态的 QKD)的安全密钥速率上限。与现有协议相比,安全密钥大小和通信距离都有显著改善,因为我们意识到在日光、下行卫星条件、精心选择的光源和良好的晶体特性下,最大通信距离可达 70000 公里。此外,使用组合的 I 型和 II 型 SPDC 光子源作为我们的纠缠光子对发生器,显著提高了光子平均数,使我们的协议对光子数分割攻击和衰减引起的大气传播更具鲁棒性。此外,该协议与现有协议相比更加安全,因为任何窃听者必须同时破解用作 PRNG 的混沌系统和 QKD 系统,才能获得有关 Alice 和 Bob 使用的测量基的任何有用信息,从而获得安全密钥。
在过去几十年中,对磁化等离子体的分离区域中具有高浓度的磁能的电流板形成,并且通过磁重新连接快速释放的能量的可能性。根据现代概念,当前板的动力学为各种恒星的变化型现象提供了基础,包括其他恒星上的太阳耀斑和耀斑,地球和其他行星磁层中的实体,以及在toka mak等离子体中的破坏不稳定性[1-5]。与理论研究一起,在专用的实验室实验中研究了电流板和磁重新连接的动力学。这些实验除其他因素外,还可以提供非平稳的天体物理现象的实验室建模[6-12]。实验室实验是在高度控制和可恢复的条件下进行的,并使用现代血浆诊断方法,这允许等离子体动力学与电流板中磁场,电流和电子动力学的演变相关联[11-16]。可以在相对较宽的范围内建立实验实验中电流板的初始条件,因此提供了不同结构的当前表,就像在自然条件下的当前板一样(例如,在地球的磁层中)。特别是,通过更改血浆中离子的质量,我们可以在板的相对厚度和霍尔效应在等离子体动力学中的作用发生变化[14,15]。在具有重离子的血浆中,我们获得了具有离子惯性长度的厚度的“薄”次离子电流板。在较轻的离子等离子体中,“厚”电流板通常形成,其厚度超过了离子惯性长度的几倍[14,15,17]。积累在亚稳态电流板附近的磁能可以转化为热能,并转化为血浆高速流的能量[18-20]。等离子体沿着电流板的表面加速,主要是在最初从纸板的中部区域到其两侧的边缘的Ampère力的作用下[11,21]。在某些情况下,血浆加速度可以在空间上进行 -