过去有自己的磁场,其小尺寸导致核心的能量损失,从而导致核心冷却和产生磁场的能力(3)。美国物理学家兼退休的首席科学家詹姆斯·劳尔·格林(James Lauer Green)提议在拉格朗日(Lagrange)1点(L1)(4)上产生磁场。Lagrange点是在空间中的sta tionary位置,在该空间中,在与更大的物体相关的旋转框架内,在小体上作用的引力作用在小体内。在他的学术论文中,绿色提议将人工磁层屏蔽放在L1上,以阻止太阳风,从而始终侵蚀火星大气(4)。他建议这样做可以使痕量气体的积累,从而逐渐形成火星上的微弱气氛。随着时间的流逝,温室气体的存在将有助于使大气变暖,从而使被困的水解冻,然后将其转化为水蒸气。此过程有可能补充火星海洋的大约七分之一(4)。我们的研究重点是通过使用太阳能帆,太阳能电池板和超级电管磁体来进一步发展这一想法,以保护火星免受太阳风的影响并使火星可居住(图1)。为了生成人造磁场,超导磁体提供了有希望的解决方案。它们经常用于医院,用于磁共振成像和诸如核磁共振光谱ETERS,融合反应堆和粒子加速器等科学仪器中(5)。在这些条件下,超导磁体的绕组具有零电阻。这些磁铁表现出降低的电阻和提高的效率,从而可以产生较大的磁场,并具有较低的能量消耗。超导磁体表现出零电阻,并且没有产生热量,从而使它们保持高电流强度(6)。维持零电阻的主要要求是将温度降低到极低的值,这是通过将电气棒网浸入液体氦气中来实现的(6)。为了最大程度地减少气体蒸发,将浓度浸入另一个装有液氮的露水容器中。即使CIR CUIT紧密关闭,提供给电路的电流也会持续到所需的时间。超导磁体非常适合在太空中使用,因为它们消耗的功率很少,并且超导体可以在当前的登角机构中运行,而后者比传统导体高得多(7)。要运输和部署这些磁铁,太阳帆可能是理想的解决方案。太阳帆利用太阳发出的光的压力推动了航天器。太阳能航行消除了燃料的需求,因为它们依靠光子进行运动(8)。为了向磁铁提供能量,可以使用太阳能电池板。当太阳照在太阳能电池板上时,来自太阳的能量
过去三十年对火星任务的研究缺乏可靠的成本估算,因此通常使用运送到低地球轨道 (LEO) 的物资总质量作为相对任务成本的粗略衡量标准,因为任务的复杂性被认为与 LEO (IMLEO) 中的初始质量大致成正比。从历史上看,高昂的发射成本导致对太空硬件开发的大量投资,从而导致高昂的太空任务成本。减轻重量成为太空任务工程的中心主题。我们现在正在进入一个新时代,发射成本不再像二十年前那样具有影响力。发射成本正在下降到我们必须问自己现在是否有必要从地球带来上升推进剂和生命支持资源(具有更高的可靠性作为额外好处),而不是使用原位推进剂生产和生命支持资源循环。
摘要。大气环境监测卫星 (AEMS),也称为大旗一号或 DQ-1,于 2022 年 4 月发射;其主要有效载荷之一是高光谱分辨率激光雷达 (HSRL) 系统。这个新系统能够精确测量全球气溶胶的光学特性,在云气溶胶激光雷达和红外探路者卫星观测 (CALIPSO) 卫星退役后,可用于地球科学界。开发合适的检索算法并验证检索结果是必要的。本研究展示了一种使用 DQ-1 HSRL 系统的气溶胶光学特性检索算法。该方法检索了气溶胶的线性去极化率、后向散射系数、消光系数和光学深度。为了验证目的,我们将检索到的结果与通过 CALIPSO 获得的结果进行了比较。结果表明,两组数据的曲线高度一致,DQ-1 的信噪比 (SNR) 有所提高。美国国家航空航天局 (NASA) 微脉冲激光雷达网络 (MPLNET) 站的光学特性曲线被选中与 DQ-1 测量值进行验证,相对误差为 25%。2022 年 6 月至 2022 年 12 月期间,使用 DQ-1 卫星和 AErosol RObotic NETwork (AERONET) 进行的气溶胶光学深度测量进行了关联,得出的 R 2 值等于 0.803。我们使用 DQ-1 数据集初步研究了撒哈拉沙尘和南大西洋的输送过程
在脱碳时代,原材料供应的向后和前向整合至关重要。钢生产的位置越来越多取决于清洁能源的可用性,这是由于运输清洁能(包括氢)大距离所带来的成本和困难。运输DRI/HBI或半生成钢产品而不是清洁能源更有效。新的钢质下部排放钢生产将取代较旧的较高排放厂。这些新工厂不会在相同的地理位置上,因为能源价格和物流不利。这些新地点将创建行业集群,并在新的国家和地区重新编写经济命运。来源:https://www.mattech-journal.org/articles/mattech/mattech/full_html/2023/04/mt20230025/mt20230025.ht20230025.html
摘要:火星的殖民化在开发可持续和有效的运输系统方面构成了前所未有的挑战,以支持解决方案间的连接和资源分配。这项研究对火星菌落提出的两种拟议的运输系统进行了全面评估:基于地面的磁悬浮(Maglev)火车和一个低轨道太空平面。通过模拟模型,我们评估了每个系统的能源消耗,运营和施工成本以及环境影响。Monte Carlo模拟进一步提供了十年来与每种期权相关的成本变异性和财务风险的见解。我们的发现表明,尽管太空平面系统提供了较低的平均成本和降低的财务风险,但Maglev Train具有更大的可扩展性和与火星基础设施开发相结合的潜力。Maglev系统的初始成本较高,还是作为长期殖民地扩张和可持续性的战略资产而出现的,强调了对与火星殖民目标保持一致的运输技术平衡投资的需求。进一步扩展了我们的探索,这项研究介绍了对替代运输技术的先进分析,包括Hyperloop系统,无人机和流浪者,并结合了火星的动态环境建模和增强性学习以进行自主导航。为了增强火星导航模拟的现实主义和复杂性,我们引入了一些重大改进。此分析是火星运输基础设施未来研究和战略规划的基础框架。这些增强功能集中在包括动态大气条件的包含,诸如陨石坑和岩石等地形特异性障碍的模拟以及引入群体智能方法以同时导航多个无人机。
•CARGO-2提供第二次出行运输底盘,1x 40kW FSP,3x ISRU推进剂生产植物,2x液化托盘和1倍地表水运输托盘•移动底盘部署FSPS,布线系统,ISRU托盘和Cargo-2还适用于Mav和Propellant Propellant Propellant Propellant
随着探索目标越来越远,太空任务变得越来越雄心勃勃,同时需要更大的制导和通信预算。这些对距离和控制的相互冲突的需求推动了对现场智能决策的需求,以减少通信和控制限制。虽然对人工智能和机器学习 (AI/ML) 软件模块的地面研究呈指数级增长,但以快速和廉价的形式在太空中实验验证此类软件模块的能力却没有增长。为此,美国宇航局艾姆斯研究中心的纳米轨道研讨会 (NOW) 小组正在通过 TechEdSat (TES-n) 飞行系列中编程称为 BrainStack 的“商业”可用前沿计算平台进行飞行评估测试。作为 BrainStack 的一部分选择的处理器具有理想的尺寸、封装和功耗,可轻松集成到立方体卫星结构中。这些实验包括对小型高性能 GPU 以及最近的 LEO 操作中的神经形态处理器的评估。此外,还计划测量这些处理器所经受的辐射环境,以了解这些新架构因长期太空辐射暴露而导致的性能下降或计算伪影。这个不断发展的灵活协作环境涉及 NASA 和其他组织的各个研究团队,旨在成为一个便捷的轨道测试平台,许多预期的未来太空自动化应用可在此平台上进行初步测试。
摘要。本文基于材料科学和资源利用的基本原理和原则。原位资源利用率(ISRU)可以充分利用太空中的材料来产生人类生存甚至星际迁移计划所需的资源。Bio-based biofuel production solutions can address human consumption in space exploration while allowing the production of fuels in a sustainable manner, with minimal inputs and producing cleaner, more environmentally friendly fuels.ISRU biofuel production can be achieved by directly converting inorganic carbon (atmospheric CO2) into target compounds as biofuels by autotrophic microorganisms, or by fixing carbon and then use将生物量或复杂底物转化为靶化合物的代谢工程,完成了两步生物燃料生产过程。在本文中,我们通过ISRU调查了在火星上生产生物燃料生产的潜在微生物细胞工厂,从而导致了一些相关的突破和发现。本文通过一系列研究推进了研究内容的发展。在本文中,我们研究并优化了基于基本燃料性能研究的新能源燃料的使用。根据先前的基础研究,本文在能源研究领域提供了一种新的思维和研究方式。
摘要:航空航天中的最新发展导致低地球轨道卫星的制造和推动成本大大降低。新趋势使卫星陆地综合网络具有全球覆盖范围的范式变化。特别是,5G通信系统和卫星的集成有可能重组下一代移动网络。通过利用网络函数虚拟化和网络切片,卫星5G核心网络将促进卫星 - 透线综合网络中网络功能的协调和管理。我们是第一个在实际卫星上部署5G核心网络以研究其可行性的人。我们进行了实验以验证卫星5G核心网络功能。经过验证的程序包括注册和会话设置程序。结果表明,卫星5G核心网络可以正常运行并生成正确的信号。关键字:5G核心网络;卫星通信;卫星互联网
地球和空间站上已经进行了大量的实验工作,以开发用于长期太空任务的种植食物的方法。5,6 月球和火星基地需要生物再生生命支持系统来实现自给自足的食物生产;否则,它们将成为价值有限的临时前哨,维护成本高昂,并需要不必要的星际旅行和相关风险。维护农作物需要人类进行大量的动手工作,从而减少了探索时间。然而,机器人食品生产现在正在地球上进行,而且,鉴于人工智能的力量,可以对其进行调整以维护火星上的农业模块。探测车可以在着陆点收集冰和土壤。机械臂在可移动的轨道上移动,可以种植、培育和收获可以包装和冷冻的食物,在人类登陆之前储存多年的供应。机器人可以是半独立的,也可以是远程控制的,带有可以轻松拆卸以根据需要连接替换臂的臂座。