Delta Rsquare Delta Rsquare All features (614) 1.75% 0.341 2.63% 0.139 Top 500 features 1.73% 0.354 2.56% 0.129 Top 400 features 1.73% 0.372 2.02% 0.148 Top 300 features 1.71% 0.343 2.22% 0.197 Top 200 features 1.73% 0.393 2.34% 0.22前100个功能1.61%0.405 1.95%0.21 Top 50个功能1.59%0.423 2.00%0.334 TOP 25特征1.62%0.42 2.29%0.372
• 短和长工作距离设计 • 高耦合效率 • 高重复性和稳定性 • 在光栅耦合器锥度处,平面前波与光束近乎准直 • 可以实现超长工作距离 (WD) – 例如高达 >800 μ m • 在 Z 方向(光束传播方向)对垂直方向具有耐受性
半导体价值链容易受到干扰,这对现代经济构成了相当大的风险。更好的数据对于决策者识别瓶颈、监控特定半导体类型的供需平衡以及管理干扰至关重要。本文提出了半导体类型和生产设施的通用分类法,以促进协调的数据收集和共享。该分类法将半导体产品分为四大类——“逻辑”、“内存”、“模拟”和“其他”——并根据其普及程度和特定功能细分为子类别。半导体生产设施根据所使用的技术和生产不同类型半导体的能力、安装的生产能力以及其他相关工厂(和公司)特征进行分类。该分类法将成为半导体生产数据库的基础,并将在未来进行修订,以跟上半导体技术的发展。
摘要:半导体行业已经收到了开发技术需要提高效率和晶圆检查过程准确性的压力。检查半导体晶圆与传统检查系统的复杂性是一个问题,因此需要复杂的解决方案。本文着眼于半导体晶圆检查系统中人工智能(AI)的评估,以改善结果。在AI中应用ML和计算机视觉方法允许自动化缺陷识别,分类和增强的产率水平。从方法论中,该研究对晶圆检查中AI实践领域的当前研究和发展进行了彻底的分析,以及改进对制造过程的影响。实验研发的一些结论表明,半导体组织在检查速度和缺陷检测之比中的距离显着增强,从而支持半导体组织中AI收敛的概念。关键字:半导体,晶圆检查,人工智能(AI),机器学习(ML),计算机视觉,缺陷检测,屈服改善,深度学习。
n近年来,使用CMOS兼容的过程制造硅光子IC(SI PIC)已使具有光学和电函数性具有成本效益的硅芯片的开发。1 - 5)这项技术是光子学 - 电力融合的高性能平台,可在各种行业提供有希望的应用。6 - 9)为增强硅光子学的整合和功能密度,已提出异质和杂交整合方法,以将各种材料系统与单个包装中的各种材料系统相结合。10,11)但是,基于PIC的模块的总成本受到测试,组装和包装过程的影响,这可能占常规INP PIC模块的总成本的80%。12,13)仅产品测试可贡献总成本的约29%,14)对于较不发达的硅光子技术技术,该图可能会增加到约60% - 90%。15)因此,减少测试,组装和包装成本对于降低基于SI PIC模块的整体成本至关重要。先前的研究采用了两种主要策略来降低测试成本:利用增强的测试结构,16)并增强了测试过程的自动化水平。14)在图片中,一种普遍的测试方法涉及信号通过具有不平衡分裂比的定向耦合器(例如99:1)。这种构造允许99%的信号正常通过波导,而1%的信号被击倒到测试分支。21)17)开发信号通常通过表面耦合器耦合到测试设备,从而促进了自动晶圆级测试系统用于原位和筛选测试的利用。18)然而,在组装和包装阶段,表面光栅耦合器(GCS)在带宽,极化和效率方面遇到限制。19)相比之下,利用点尺寸转换器(SSC)的边缘耦合提供了优点,例如带宽的带宽,降低极化敏感性和增强的耦合效率。20)然而,边缘耦合预先挑战,例如与SSC相关的较大足迹,固定的耦合位置,有限的对齐耐受性和耦合方面的严格规范。
摘要:功率转换效率(PCE)是评估太阳能电池的输出特性的主要参数。抗反射涂层(ARC)起着抑制太阳能电池表面的光损失的作用,从而增强了PCE。本文研究了晶体硅(C-SI)太阳能电池上双层抗反射涂层(DLARC)的不同材料。使用PV Lighthouse软件的晶圆射线示踪剂完成模拟硅太阳能电池的总体过程方法。检查了具有不同类型的双层的五个光捕获(LT)方案。c-Si的最大电势光电密度(J MAX)用ARC显示出比参考c-Si(无弧)的J max的改善。lt方案II:SIO 2 /TIO 2产生J Max的最大值,其中该值为42.20 mA /cm 2。这表明方案II具有最高的J MAX增强功能,值为10.01%。这一发现意味着DLARC适用于减少光损失,因此有效地提高了太阳能电池的性能。关键字:光伏,太阳能电池,抗反射涂层,光捕获,射线跟踪1。简介
8 三星电子有限公司三星先进技术研究所 (SAIT),韩国水原 16678 gwanlee@snu.ac.kr 摘要 (Century Gothic 11) 通过化学气相沉积 (CVD) 在具有外延关系的晶体基底(例如 c 面蓝宝石)上合成了晶圆级单晶过渡金属二硫属化物 (TMD)。由于 TMD 外延生长的基底有限,因此需要将转移过程转移到所需的基底上进行器件制造,从而导致不可避免的损坏和皱纹。在这里,我们报告了通过过渡金属薄膜的硫属化在超薄 2D 模板(石墨烯和 hBN)下方的 TMD(MoS 2 、MoSe 2 、WS 2 和 WSe 2 )的异轴(向下排列)生长。硫族元素原子通过石墨烯在硫族化过程中产生的纳米孔扩散,从而在石墨烯下方形成高度结晶和层状的TMD,其晶体取向排列整齐,厚度可控性高。生长的单晶TMD显示出与剥离TMD相当的高热导率和载流子迁移率。我们的异轴生长方法能够克服传统外延生长的衬底限制,并制造出适用于单片3D集成的4英寸单晶TMD。参考文献 [1] Kang, K. 等。具有晶圆级均匀性的高迁移率三原子厚半导体薄膜。Nature 520 , 656-660 (2015).[2] Liu, L. 等。蓝宝石上双层二硫化钼的均匀成核和外延。Nature 605 , 69-75 (2022) [3] Kim, K. S. 等人。通过几何限制实现非外延单晶二维材料生长。Nature 614 , 88-94 (2023)。
Kulicke&Soffa自2008年以来,英国和爱尔兰的Hub Dicing Blades专有分销商已被扩展到包括奥地利,德国,荷兰和葡萄牙。注释编辑此新闻稿是由Inseto(英国)发行的,受技术内容创建和通信机构声明(www.declaration.co.uk,+44(0)1522 789000)的限制。如果您对此公告有任何编辑询问,请联系Mandy Warrilow,新闻官员,mandy@declaration.co.uk。,如果您需要与本新闻稿有关的文章或任何其他形式的副本,请联系技术作者Richard Warrilow,Richard@declaration.co.uk。请致电+44(0)1264 334505与Matt Brown联系,或通过电子邮件(matt.brown@inseto.co.uk)与所有广告和赞助事务有关。关于Inteto(UK)Limited成立于1987年和ISO 9001:2015自2005年以来的认证,Inteto是针对半导体,微电动和高级技术领域的设备和相关材料的领先技术分销商,以及电子,自动化和工业制造的粘合剂。公司有三个部门,即:
高击穿电压:GaN器件可以处理高电压 高电子迁移率:GaN晶体管用于无线通信的功率放大器 高电子迁移率:GaAs表现出优异的电子传输特性,使其适用于高频应用 低噪声系数:基于GaAs的器件通常用于敏感RF接收器的低噪声放大器(LNA) 高功率处理能力:GaAs功率放大器在RF通信系统中普遍存在。