到 2050 年,安装的太阳能电池板规模必须达到约 100 TWp,才能对我们的能源结构和碳排放产生切实影响。薄膜非晶硅电池板是目前唯一能够安装 100 TWp 的技术。如果用铜或铝代替硅板中的银,硅晶片电池板可以达到 100 TWp。碲化镉和铜铟镓硒将成为大局中微不足道的技术。为了高效生产硅板,需要研究高效净化硅、低切口损耗硅晶片以及地球上储量丰富的硅顶电池。或者,我们可以寻求一种比硅更节能且仅利用地球上储量丰富的材料的新型电池技术。对于任何电池技术,都需要研究以改善成本、效率和可持续性,包括用于每日至多年存储以及太阳能电力区域和全球贸易的存储技术、回收技术以最大限度地降低成本并最大限度地利用废弃电池板的收入,以及用于实时和现场消耗太阳能电力的系统和应用。© 2020 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据知识共享署名 4.0 许可条款分发(CC BY,http://creativecommons.org/licenses/by/4.0/),允许在任何媒体中不受限制地重复使用作品,前提是对原始作品进行适当的引用。[DOI:10.1149/2162-8777/abd377]
本期特刊主要关注 Ga 2 O 3 外延生长和电子器件相关主题的最新进展。实验和理论工作均可接受。我们邀请向本期特刊提交原创研究文章/通讯和综合评论论文。本期特刊将涵盖的主题包括但不限于: 高压 Ga 2 O 3 电子器件; Ga 2 O 3 射频器件; Ga 2 O 3 异质结器件; Ga 2 O 3 薄膜的高质量外延生长; Ga 2 O 3 在异质衬底上的异质集成; Ga 2 O 3 器件的理论建模与仿真; 大尺寸 Ga 2 O 3 单晶和晶片。
摘要:过去几十年来,人们对基于半导体薄膜、纳米线和二维原子层的光电导体进行了广泛的研究。然而,没有明确的光增益方程可以用来拟合和设计这些器件的光响应。在本文中,我们根据实验观察,成功推导出硅纳米线光电导体的明确光增益方程。硅纳米线是通过标准光刻技术在绝缘体上硅晶片的器件层上进行图案化而制成的,该晶片上掺杂了浓度为 ∼ 8.6 × 10 17 cm − 3 的硼。研究发现,制成的硅纳米线具有宽度约为 32 nm 的表面耗尽区。该耗尽区保护沟道中的电荷载流子免受表面散射的影响,从而使电荷载流子迁移率与纳米线尺寸无关。在光照下,耗尽区呈对数变窄,纳米线沟道相应变宽。光霍尔效应测量表明,纳米线光电导不是由载流子浓度的增加引起的,而是由纳米线通道的加宽引起的。因此,纳米线光电导体可以建模为与纳米线表面附近的浮动肖特基结相关的电阻器。基于肖特基结的光响应,我们推导出纳米线光电导体的显式光增益方程,该方程是光强度和器件物理参数的函数。增益方程与实验数据非常吻合,从实验数据中我们提取出少数载流子的寿命为几十纳秒,与文献中报道的纳米线中少数载流子的寿命一致。关键词:光电导体,显式增益方程,增益机制,硅纳米线,光霍尔效应 P
关键词:离子注入、SiC、封盖、碳、退火。摘要本研究报告了一项广泛的研究,研究了离子注入 SiC 材料高温退火过程中使用的封盖材料对表面粗糙度和质量、掺杂剂分布和扩散以及晶体缺陷的影响。本研究调查了化学气相沉积 (CVD)、物理气相沉积 (PVD) 和热解光刻胶 (PR) 碳封盖材料。CVD 碳层(也称为高级图案化膜 (APF®))是使用 Applied Producer® 沉积的。引言 在加工碳化硅 (SiC) 晶片以制造功率 MOSFET 和二极管 [1] 等微电子器件的过程中,离子注入后在衬底晶片顶部沉积一层保护层,以防止 Si 升华和台阶聚束形成以及其他表面缺陷的出现 [2, 3, 4],从而保持表面质量,这些缺陷发生在激活 SiC 中掺杂剂所需的高温退火步骤中 [5]。这项工作研究了在这种高温退火过程中使用的保护性覆盖材料对表面和块体材料质量的影响。实验细节 在高温 (500 ˚C) 下用铝离子注入样品,铝离子以 180 keV 和 2.5E15 离子/cm2 的剂量加速,以便在约 0.2 微米深度处实现约 2E20 离子/cm3 的峰值浓度。然后用不同的碳基材料覆盖样品,然后在 1800˚C 下退火 30 分钟。然后用 O2 灰分去除保护盖,随后进行清洁和擦洗,然后进行原子力显微镜 (AFM)、在 SICA 工具上实现的表面和体光致发光 (PL) 以及二次离子质谱 (SIMS)。结果我们报告了模拟和 SIMS 显示的铝注入后轮廓之间的出色一致性
摘要:由人工亚波长纳米结构制成的超透镜已展示出光聚焦和微型成像的能力。本文,我们报告了通过互补金属氧化物半导体兼容工艺在12英寸玻璃晶片上批量生产非晶硅超透镜的演示。所制备的超透镜的测量数值孔径为0.496,聚焦光斑尺寸在940nm波长处为1.26μm。将超透镜应用于成像系统以测试成像分辨率。可以清楚地观察到宽度为2.19μm的分辨率图的最小条。此外,同一系统演示了指纹成像,并证明了使用超透镜阵列来减小系统尺寸的概念,以实现未来的紧凑型消费电子产品。
SSPL 从研发走向生产的梦想已经结出硕果,其产品系列完全由其自主开发。GaN MMIC、高功率激光二极管、与红外探测相关的关键子技术以及基于 MEMS、声发射和 SAW 设备的传感器是 SSPL 的旗舰开发领域。这些技术领域的产品包括功率放大器、低噪声放大器、芯片形式的 SPDT 开关、SiC 单晶晶片、单发射器光纤耦合激光二极管、斯特林制冷机、红外敏感材料、MEMS g 开关、e-Nasika CWA 探测器和用于爆炸物检测的基于 CNT 的 n-Nose。SSPL 开发的多项技术和产品已被 DRDO 实验室和太空应用所接受和使用。
IMEC正在扩展其硅光子平台“ ISIPP”的功能,并具有经过验证的混合激光积分界面,从而使IIII-V激光器和放大器的高通量晶片尺寸翻转芯片组装能够。与开发合作伙伴Sivers Photonics和ASMPT合作,参考接口设计和组装过程是为来自Sivers INP 100产品平台的Flip-Chip键合DFB激光器而创建的,其精度为0.5μm,使得可重复的耦合损失在2DB和Waveguide-couped-couped and As高度符合40mmw。该技术现在可以通过原型运行来进行探路和早期产品开发,针对广泛的应用,包括光学通信,光学3D传感(LIDAR),生物光音,高精度计量学,气体传感等。
III-V半导体材料组的生长特性与硅具有相似的生长特性,该特性在微电子学中已良好。III-V半导体材料是在单晶半导体底物上的外延生长的。主要区别在于光电特性中,大多数III-V半导体具有直接的带隙,这是制造有效激光器和光学放大器的先决条件,缺少属性硅。此外,几个III-V半导体(例如GAAS和INP)具有比硅具有更好的电子性能,这使它们适合于高端RF插图。各种III-V半导体之间的关键差异是波长范围,它们支持光学功能,例如发光,放大,传输和检测光。对于GAA,这是在半导体激光器中应用的第一种III-V材料,操作窗口的范围为800-1100 nm,使其适用于短期通信。GAAS垂直腔表面发射激光器(VCSELS)是短距离(<几百米)通信的主要光源。用于INP及其第四纪化合物Ingaasp和Ingaalas,可以在INP底物上生长,操作窗口范围为1200-1700 nm,范围涵盖了在更长距离(O波段,C-Band,C-Band和l频段)高速通信的最重要波长。因此,这是长时间和中距离高速通信的首选材料。这使其成为在复杂图片中使用的首选材料,在复杂图片中,必须将广泛的功能集成到单个芯片中。光过滤器)。INP及其化合物Ingaasp和Ingaalas的另一个优点是,它们的光学特性(增益,透明度,吸收和检测以及电光调制效率)可以在晶圆中进行本地设计,同时保留在宽波长范围内优化性能的可能性。示例是连贯的发射器和接收器,更一般而言,需要将激光器和光学放大器与有效调节器和检测器集成在一起的任何电路,以及低损坏的被动光元素(例如,用于钝化和隔离的介电材料与用于硅微电子的介电材料非常相似。电气间连接的金属不同。黄金由于其良好的电气和机械性能而经常用于III-V半导体,而由于它具有扩散到硅非常有害的风险,因此它没有应用于硅上。另一方面,铝和铜很少用于III-V材料。特别是铜杂质在III-V材料中降解电和光学特性。晶片小于硅。对于GAAS 4“,6”和8英寸的直径可在市售。INP晶圆具有2英寸,3英寸和4英寸的直径,质量良好。 较大的6英寸晶片可用于研发目的,其蚀刻坑密度(EPD)稍大,在需求增加时将改善。INP晶圆具有2英寸,3英寸和4英寸的直径,质量良好。较大的6英寸晶片可用于研发目的,其蚀刻坑密度(EPD)稍大,在需求增加时将改善。