成功完成本课程的前提是,学生将在整个课程期间(通常每周每学分 3 小时)为每个学分花费至少 45 小时用于教学、准备/学习或课程相关活动,包括但不限于实习、实验室和临床实践。其他课程结构的工作量预期与教学大纲中所述相同。a.项目:将为您提供最终团队项目,以实践 AI 原则。由 3-4 人组成的自选团队将共同解决课程中讨论的一些选定问题。该团队项目将是一个协作小组项目。您可以自由选择自己的合作伙伴,但您不能在项目中途更改合作伙伴。作为学习目标的一部分,学期项目的逐步设计和实施将通过作业完成。b.考试:将有一次期中考试和一次期末考试。c. 测验:将有 1-2 次测验,每次测验都将算作家庭作业。d. 家庭作业:每项家庭作业通常以应用程序为中心,包括书面和编程部分。
在生成式人工智能蓬勃发展的背景下,隐私、劳动力流失和错误信息等重大风险成为人们关注的焦点,但重要的是不要低估现有全球数字鸿沟的影响。虽然生成式人工智能模型的出现有可能显著改善低收入国家的公共服务,但必须承认相关风险。如果没有坚实的数据和基础设施基础,各国可能会发现开发国内生成式人工智能能力具有挑战性,可能会导致对外国技术的依赖。这种依赖可能会带来额外的障碍,包括无法使用当地语言的人工智能工具以及人工智能模型可能存在偏见。应对这些挑战对于促进人工智能准备的公平和包容性进步至关重要。
首先,我们研究了生成超级马里奥关卡的不同可能性。TOAD-GAN [ 3 ] 仅使用一个示例即可进行训练。该方法还使用户能够通过更改代表生成器网络输入的噪声向量来控制生成过程的输出。由于设计师无法解释噪声向量,因此设计师仍然无法根据自己的需求设计内容。为了实现这一点,必须让设计师能够解释噪声向量,并将噪声向量的不同区域映射到噪声向量变化所产生的内容。生成超级马里奥关卡的另一种方法是使用带有图块集的进化算法 [ 4 ]。图块集强制输出的一致性,而 Kullback-Leiber 散度
我的 AI 架构看起来会是什么样子?...........................................................................................................
生成式人工智能是一组相对较新的技术,它利用大量(非常大)数据以及一些机器学习 (ML) 技术根据用户的输入(称为提示)生成内容。新内容可以是书面形式(例如 ChatGPT 或 Bard),也可以是视觉形式(例如 Dall-E)。这些工具正在迅速发展,并且仍然是活跃研究的主题:提高我们对它们实际工作方式及其在社会中的使用影响的理解。这些工具不是人类意义上的真正智能,而是非常复杂的模型,可以预测满足提示的语言、文本或视频应该是什么。由于其影响和潜在用途以及风险和危险,这些指南可作为波士顿市员工的临时资源。
1. 利用人工智能聊天机器人实现日常任务和客户服务的自动化:人工智能聊天机器人越来越多地被用于自动化日常任务,例如客户服务查询,从而使人类工作者能够专注于更复杂和更有价值的任务。这些聊天机器人正在接受训练,以便快速准确地响应客户查询,旨在提高客户满意度。 2. 提高搜索引擎结果的准确性和速度:Transformer 模型和 LLM 被用于提高搜索引擎结果的准确性和速度。通过更好地理解自然语言,这些模型可以实时向用户提供更相关的结果。 3. 提高机器翻译的准确性和速度:借助 LLM,机器翻译变得更准确、更快速。这有助于打破语言障碍,使人们更容易在全球范围内交流和开展业务。 4. 更高效、更准确的自然语言处理:LLM 和 Transformer 模型被用于提高自然语言处理的效率和准确性。这使得语音激活助手、改进的情绪分析和更准确的文本分类等新应用成为可能。 5. 改进广泛应用的预测分析:借助扩散模型,预测分析在股票市场预测、客户行为预测和欺诈检测等广泛应用中变得更加准确和有用。6. 改进图像和视频识别和分析:LLM 和变压器模型正用于改进图像和视频识别和分析。这使新的应用成为可能,例如改进监控、增强医学成像和更准确的内容推荐。7. 更复杂和准确的数据分析:借助 LLM,数据分析变得更加复杂和准确。这可以帮助组织根据从其数据中获得的见解做出更好的决策。8. 通过加密和身份验证提高数据隐私和安全性:借助 LLM 和其他技术,数据隐私和安全性正在通过加密和身份验证得到改善。这有助于确保敏感信息的安全和机密性。
在依赖发明人了解潜在的现有技术时,尤其是对于使用人工智能的发明,您应该谨慎行事。许多公司和大学都强烈鼓励发明人寻找在现有流程中实施人工智能的方法,这导致许多发明人无意中重新发明了其他人可能已经探索或实施的东西。当然,这并不一定意味着两组发明人都发明了相同的解决方案。如果您确实发现了这样的问题,您应该彻底调查这些方法是否真的相同,或者这些方法之间是否存在差异,这些差异可能足以证明新颖性和非显而易见性。请参阅显而易见性驳回:攻击表面案例和显而易见性驳回:反驳表面案例。
摘要 本文探讨了大学应如何应对学术不诚实行为的威胁,包括论文工厂和破坏评估流程和机构信誉的人工智能。本文介绍了为打击论文工厂的使用而采取的措施,以及像 ChatGPT 这样的工具,这些工具显然能够生成看似可信的论文,并足以在迫在眉睫的截止日期前提供解决方案。本文主张重新考虑传统论文,因为传统论文的价值可能已经值得怀疑。我们应该寻找替代方案。本文讨论了大学是否应该禁止 ChatGPT 和类似工具,或者接受它们并设计更难伪造的评估流程。本文提出了论文的修改版本,即反思报告,并解释了为什么这是一种更具创造性和独特性的方法,更适合当今的学习者,并且更符合雇主对就业能力和毕业生所需技能的期望。
“合成数据”是一类人工生成的数据,而不是从对现实世界的直接观察中获得的数据。可以使用不同的方法生成数据,例如从真实数据中进行统计严格采样、语义方法和生成对抗网络,或者通过创建模拟场景来生成数据,其中模型和流程相互作用以创建全新的事件数据集。
