本研究调查了使用黑曲霉培养滤液生产氧化锌纳米粒子 (ZnO NPs) 作为一种可持续且环保的方法,将其与碳酸锌溶液结合。使用透射电子显微镜 (TEM)、能量色散 X 射线衍射 (EDX)、扫描电子显微镜 (SEM) 和傅里叶变换红外光谱 (FT-IR) 检查生产的 ZnO 纳米粒子。表征数据验证了高度结晶的 ZnO NPs 的产生,平均尺寸范围为 27 至 40 纳米。研究了 ZnO NPs 在理想温度下对赭曲霉和黑曲霉生长的影响。在剂量分别为 0.25%、0.5% 和 1% 时,黑曲霉和赭曲霉分别导致 56%、81% 和 87% 的真菌生长抑制和 64%、71% 和 86% 的真菌生长抑制。在最高 ZnO NPs 浓度下,观察到最大抑制率。这项研究凸显了黑曲霉作为生物工厂生产 ZnO 纳米颗粒的潜力,这些纳米颗粒在农业和其他领域具有广阔的应用前景。环保的合成方法,加上合成的 ZnO 纳米颗粒的抗真菌特性,为植物病害管理提供了一种可持续且环保的传统杀菌剂替代品。
固态发酵(SSF)提供了一种可持续的方法,可增强农业残留物的营养质量,例如红米麸。这项研究旨在确定红米麸的SSF的最佳温度和持续时间,专门针对增加粗蛋白(CP)含量并减少粗纤维(CF)含量。sff用尼日尔曲霉(A. Niger)USM F4连续14天(25°C,35°C和45°C)连续14天进行。将总共63个水稻麸样样品分为三个温度组,每个温度均包含21个样品。在14天发酵期间以48小时的间隔收集了每组三个样本。通过在60°C下干燥24小时,以48小时的间隔收集的样品的发酵过程。使用官方分析化学家(AOAC)概述的方法,对粗蛋白(CP),灰分提取物(EE)和粗纤维(CF)含量进行了直接分析。与未在室温(25 O C)的未发酵米麸相比,温度和发酵持续时间对CP,ASH,EE和CF含量的显着影响。在第10天,观察到CP的峰值和CF的最高降解,而ASH和EE含量的最大增加发生在第8天。在温度条件下,在35°C下记录了最高的CP值和最低的CF值。相反,在第10天的25°C下观察到CP和CF降解的最低改善。总而言之,尼日尔米麸的SSF的最佳条件以增强CP含量和降解CF的温度为35°C,发酵持续时间为10天。
1。Galicia-Garcia U,Benito-Vicente A,Jebari S,Larrea-Sebal A,Siddiqi H,Uribe KB等。2型糖尿病的病理生理学。国际分子科学杂志。2020; 21(17):6275。2。Firmin S,Bahi-Jaber N,Abdennebi-Najar L.食品污染物和2型糖尿病的编程:动物研究的最新发现。健康与疾病发育起源杂志。2016; 7(5):505-12。 3。 IQBAL SZ。 食品中的霉菌毒素,食品分析的最新发展以及未来的挑战;评论。 食品科学中的当前意见。 2021; 42:237-47。 4。 dai Y,Huang K,Zhang B,Zhu L,Xu W.黄曲霉毒素B1诱导的表观遗传改变:概述。 食物和化学毒理学。 2017; 109:683-9。 5。 Wang C,Li Y,Zhao Q. 基于与互补DNA的竞争,用于快速检测黄曲霉毒素B1的信号电化学适时性。 生物传感器和生物电子学。 2019; 144:111641。 6。 min L,Fink-Gremmels J,Li D,Tong X,Tang J,Nan X等。 哺乳奶牛中黄曲霉毒素B1生物转化和黄曲霉毒素M1分泌的概述。 动物营养。 2021; 7(1):42-8。 7。 fouad AM,Ruan D,El-Senousey HK,Chen W,Jiang S,ZhengC。曲霉素B的有害效果和控制策略由Aspergillus flavus和parassiticus菌株在家禽上产生:审查。 毒素(巴塞尔)。 2019; 11(3)。 8。 危险材料杂志。2016; 7(5):505-12。3。IQBAL SZ。 食品中的霉菌毒素,食品分析的最新发展以及未来的挑战;评论。 食品科学中的当前意见。 2021; 42:237-47。 4。 dai Y,Huang K,Zhang B,Zhu L,Xu W.黄曲霉毒素B1诱导的表观遗传改变:概述。 食物和化学毒理学。 2017; 109:683-9。 5。 Wang C,Li Y,Zhao Q. 基于与互补DNA的竞争,用于快速检测黄曲霉毒素B1的信号电化学适时性。 生物传感器和生物电子学。 2019; 144:111641。 6。 min L,Fink-Gremmels J,Li D,Tong X,Tang J,Nan X等。 哺乳奶牛中黄曲霉毒素B1生物转化和黄曲霉毒素M1分泌的概述。 动物营养。 2021; 7(1):42-8。 7。 fouad AM,Ruan D,El-Senousey HK,Chen W,Jiang S,ZhengC。曲霉素B的有害效果和控制策略由Aspergillus flavus和parassiticus菌株在家禽上产生:审查。 毒素(巴塞尔)。 2019; 11(3)。 8。 危险材料杂志。IQBAL SZ。食品中的霉菌毒素,食品分析的最新发展以及未来的挑战;评论。食品科学中的当前意见。2021; 42:237-47。4。dai Y,Huang K,Zhang B,Zhu L,Xu W.黄曲霉毒素B1诱导的表观遗传改变:概述。食物和化学毒理学。2017; 109:683-9。 5。 Wang C,Li Y,Zhao Q. 基于与互补DNA的竞争,用于快速检测黄曲霉毒素B1的信号电化学适时性。 生物传感器和生物电子学。 2019; 144:111641。 6。 min L,Fink-Gremmels J,Li D,Tong X,Tang J,Nan X等。 哺乳奶牛中黄曲霉毒素B1生物转化和黄曲霉毒素M1分泌的概述。 动物营养。 2021; 7(1):42-8。 7。 fouad AM,Ruan D,El-Senousey HK,Chen W,Jiang S,ZhengC。曲霉素B的有害效果和控制策略由Aspergillus flavus和parassiticus菌株在家禽上产生:审查。 毒素(巴塞尔)。 2019; 11(3)。 8。 危险材料杂志。2017; 109:683-9。5。Wang C,Li Y,Zhao Q. 基于与互补DNA的竞争,用于快速检测黄曲霉毒素B1的信号电化学适时性。 生物传感器和生物电子学。 2019; 144:111641。 6。 min L,Fink-Gremmels J,Li D,Tong X,Tang J,Nan X等。 哺乳奶牛中黄曲霉毒素B1生物转化和黄曲霉毒素M1分泌的概述。 动物营养。 2021; 7(1):42-8。 7。 fouad AM,Ruan D,El-Senousey HK,Chen W,Jiang S,ZhengC。曲霉素B的有害效果和控制策略由Aspergillus flavus和parassiticus菌株在家禽上产生:审查。 毒素(巴塞尔)。 2019; 11(3)。 8。 危险材料杂志。Wang C,Li Y,Zhao Q.基于与互补DNA的竞争,用于快速检测黄曲霉毒素B1的信号电化学适时性。生物传感器和生物电子学。2019; 144:111641。6。min L,Fink-Gremmels J,Li D,Tong X,Tang J,Nan X等。哺乳奶牛中黄曲霉毒素B1生物转化和黄曲霉毒素M1分泌的概述。动物营养。2021; 7(1):42-8。7。fouad AM,Ruan D,El-Senousey HK,Chen W,Jiang S,ZhengC。曲霉素B的有害效果和控制策略由Aspergillus flavus和parassiticus菌株在家禽上产生:审查。毒素(巴塞尔)。2019; 11(3)。 8。 危险材料杂志。2019; 11(3)。8。危险材料杂志。Park S,Lee J-Y,You S,Song G,Lim W.黄曲霉毒素B1在体外对人类星形胶质细胞的神经毒性作用和体内斑马鱼的神经胶质细胞发育。2020; 386:121639。9。Kadhum GM,Al_jumaili SA,Al_hashemi Ha。研究黄曲霉毒素B1在糖尿病2型患者血液中的研究。艾滋病毒护理。2022; 22(2):3632–4- – 4。10。Abd al-Redha S,Falah Z,Ahmed F,Falah G,Hasson A.对血液中的尾毒素A及其与癌症疾病的关系进行了研究。2017。11。Abdullah Har,Aljumaili Sar。调查卡尔巴拉省人血液中patulin的调查。2018。12。Singhal SS,Saxena M,Awasthi S,Ahmad H,Sharma R,Awasthi YC。性别相关的人类结肠谷胱甘肽S-转移酶的表达和特征的差异。Biochimica et Biophysica Acta(BBA) - 晶状结构和表达。1992; 1171(1):19-26。 13。 Lalah Jo,Omwoma S,Orony D.黄曲霉毒素B1:肯尼亚人类的化学,环境和饮食来源以及潜在的暴露。 黄曲霉毒素B1的发生,检测和毒理学作用。 2019。1992; 1171(1):19-26。13。Lalah Jo,Omwoma S,Orony D.黄曲霉毒素B1:肯尼亚人类的化学,环境和饮食来源以及潜在的暴露。黄曲霉毒素B1的发生,检测和毒理学作用。2019。
抽象的黄曲霉毒素污染对公共卫生和经济稳定构成了重大威胁,特别是在埃塞俄比亚等地区,农业实践对生计至关重要。本评论提供了全球黄曲霉毒素污染的当前状态的快照,重点是埃塞俄比亚。黄曲霉毒素污染是一个全球关注的问题,影响了发达国家和发展中国家。在非洲,气候条件有利于产生黄曲霉毒素的真菌的生长,问题尤其严重。埃塞俄比亚是非洲最大的农业生产商之一,在减轻黄曲霉毒素污染方面面临重大挑战。埃塞俄比亚黄曲霉毒素的主要来源包括花生,玉米和其他主食作物,储存设施不足,农业习惯不足,这加剧了这个问题。包括埃塞俄比亚在内的几个非洲国家,由于急性毒性到诸如肝癌等慢性健康问题,对公共卫生的不利影响。此外,黄曲霉毒素污染施加了巨大的经济负担,包括降低农业生产力,贸易限制和增加的医疗保健成本。埃塞俄比亚和其他受影响地区黄曲霉毒素污染的缓解策略包括一种多方面的方法,包括改进的农业实践,适当的干燥和储存技术,以及监管措施和质量控制标准的制定和实施。总而言之,埃塞俄比亚和非洲的黄曲霉毒素污染仍然是一个紧迫的问题,对公共卫生和经济发展的影响深远。此外,促进农作物多元化并投资于黄曲霉毒素检测和管理是有效缓解策略的关键组成部分。
感染仍然是严重的性贫血(SAA)患者死亡率的主要原因,侵入性真菌感染是巨大的威胁。曲霉曲霉占大多数报告的真菌感染病例。在这里,尽管持续存在临床真菌测试,但我们介绍了急性严重性性贫血(VSAA)患者中明阿曲霉感染的病例。由于全年养分为一个月以上,并且间歇性发烧10天,该患者被送往医院。炎症指标升高和异常肺成像提示感染,促使人们考虑了真菌受累。尽管来自多种血液,痰液真菌培养和血清(1,3)-β-D-葡聚糖/半乳糖量测试的阴性。元基因组下一代测序(MNG)在多个血液样本上,以及临床症状,证实了葡萄链球菌感染。脂质体两性霉素B和伏立康唑的靶向抗真菌治疗显着改善了肺症状。此外,本研究还审查并比较了AA患者先前曲霉感染的症状,诊断方法和治疗方法。它强调了早期MNG使用在诊断和管理传染病中的关键作用,从而提供了诊断和治疗VSAA真菌感染的见解。
提交日期:2023 年 11 月 13 日 修订日期:2024 年 4 月 6 日 接受日期:2024 年 6 月 22 日 摘要 聚合酶链式反应 (PCR) 是提高检测真菌感染(例如由黑曲霉引起的感染)灵敏度的重要技术。纯 DNA 和 DNA 分离技术的可用性是实施 PCR 的重要因素。本研究旨在比较使用基于过滤器的试剂盒方法和冷却分离黑曲霉 DNA 的质量和数量。实验研究设计使用琼脂糖凝胶电泳 (1.5%) 对 DNA 分离物进行定性测试,使用紫外可见分光光度计 (波长为 260 nm 和 280 nm) 进行定量 DNA 测试。数据分析比较了两种方法分离的 DNA 的定性和定量结果。结果表明,两种分离方法中都存在 DNA 带,基于过滤器的试剂盒方法中的带较粗使用基于过滤器的试剂盒分离后的 DNA 平均浓度 (6,478 ng/μl) 高于冷却方法 (5,994 ng/μl)。基于过滤器的试剂盒中的 DNA 纯度 (1.7) 也高于冷却方法 (1.1)。基于过滤器的试剂盒方法含有支持成功分离 DNA 的化学成分。可以得出结论,基于过滤器的试剂盒方法比冷却方法产生的黑曲霉 DNA 分离物质量更好、数量更多。这些发现意味着基于过滤器的试剂盒可能是实验室应用中分离黑曲霉 DNA 的更好选择。关键词:黑曲霉;冷却方法;基于过滤器的试剂盒 1. 简介
目前,柠檬酸是通过微生物发酵生产的,使用各种微生物,有三种不同的技术,即深层发酵 (SmF)、固态发酵 (SSF) 和液体表面发酵 (LSF)。目前,柠檬酸的大部分商业化生产是通过深层发酵,使用 A. niger 作为糖工业副产品的底物。然而,最近,固态发酵的开发已显示出一些前景,有望成为柠檬酸商业化生产深层发酵的替代品。为了找到一种比现有发酵技术更有效、更省油、更省力、更经济的柠檬酸生产替代发酵技术,本综述对固态发酵和深层发酵进行了比较。
曲霉属。引起广泛的急性,亚急性和慢性肺部条件,其中有248条可能导致肺功能和死亡的逐渐丧失。在医学实践中更广泛地使用249次免疫抑制已增加了250曲霉属的患者数量。肺部感染。 与曲霉相关的肺251疾病的诊断和管理通常很复杂,并且曲霉肺252疾病患者的最佳治疗通常需要参与专业知识。 本临床253陈述的目的是总结曲霉相关的254慢性(定义为持续3个月或更长时间)肺部疾病的患者的管理方法。 在本临床255陈述中未详细介绍:(i)由曲霉属引起的急性浸润感染。 ; (ii)非曲霉真菌引起的慢性感染256; (iii)严重的哮喘具有真菌敏化(SAFS); (iv)257个由暴露于曲霉属引起的高敏性肺炎。 (农民的肺)最有258个最佳特征是间质性肺部疾病而不是感染的一种形式[1,2]。 259肺部感染。与曲霉相关的肺251疾病的诊断和管理通常很复杂,并且曲霉肺252疾病患者的最佳治疗通常需要参与专业知识。本临床253陈述的目的是总结曲霉相关的254慢性(定义为持续3个月或更长时间)肺部疾病的患者的管理方法。在本临床255陈述中未详细介绍:(i)由曲霉属引起的急性浸润感染。; (ii)非曲霉真菌引起的慢性感染256; (iii)严重的哮喘具有真菌敏化(SAFS); (iv)257个由暴露于曲霉属引起的高敏性肺炎。(农民的肺)最有258个最佳特征是间质性肺部疾病而不是感染的一种形式[1,2]。259
背景:结直肠癌干细胞(CR-CSC)源自HCT-116细胞系建立的人类结肠癌细胞系,用CD44+/CD133+验证。这项研究通过全面的细胞毒性评估来研究将上瓜蛋白酶(EGCG)与5-氟尿嘧啶(5-FU)组合对CR-CSC的协同作用,旨在增强治疗结果。EGCG是一种在绿茶中具有抗癌活性的多酚。先前的研究报道,EGCG的抗癌活性涉及抑制凋亡的增殖和诱导,从而在脊柱切除术后结直肠腺瘤的患者中降低了多达51.6%的复发。意义在于通过了解常规化学治疗剂和天然化合物之间的潜在协同作用来优化治疗策略。鉴于5-FU作为CR-CSC化学疗法中的基石和EGCG的出现作为有希望的天然化合物的地位,该研究探讨了其个体和组合的细胞毒性谱。
曲霉的绿曲霉和绿色链霉菌的纤维素分离,从尼日利亚尼日利亚大学的废物储层土壤中分离出来1 *,Fadayomi M.和Rikiji U.S. 1美国生物学系,微生物学和生物技术系,尼日利亚尼日利亚尼罗河大学,尼日利亚,尼日利亚。*通讯作者的电子邮件地址:gloria.ezeagu@nileuniversity.edu.ng电话:+2348060322809摘要使用微生物作为工业经济酶的生物学来源的潜力刺激了在几种微型机器人中的细胞外酶活性的利用中的利益。这项研究的目的是使用纤维素刚果红琼脂培养基评估两种微生物,曲霉和链霉菌的纤维素降解潜力。从废物垃圾场收集的土壤样品被连续稀释,并在淀粉酪蛋白琼脂和SDA中接种,分别分离出颗粒状的葡萄链链球菌和A. oryzae。为了评估其利用纤维素的潜力,在纤维素刚果介质上接种了两种微生物中的每一种,并在30ºC下孵育7天。孵育后围绕菌落周围的清除区域证实了细胞外纤维素酶的分泌,并用作纤维素利用的指征。用仪表规则测量清理区域。在获得的结果中,两种微生物均表现出具有曲霉曲霉的纤维素利用能力,显示清除30.50±0.50 mm的区域,而链霉菌则显示清除60.00±1.00 mm的清除区。它不溶于水,并作为晶体存在。结果表明,这两种微生物都可以是酶纤维素酶的有效生产者,而链霉菌晶状体具有较高的产生纤维素酶的能力。关键词:纤维素,刚果红,废物降低,链霉菌核桃介绍研究纤维素的背景是植物细胞壁的主要成分,是陆地生态系统中最丰富的有机化合物的主要成分(Book等,2016)。其降解是一个关键过程,尤其是在土壤生态系统中,在养分循环和有机物分解中起着至关重要的作用(Datta,2024年)。化学(或热化学)和生化过程的组合用于在工业范围内降解这种多糖生物量,但是由于酸或碱基腐蚀引起的问题,高温,中和解决方案的脱水量以及对反应的难度,这些过程需要特殊设备,因此需要特殊设备,因此存在许多问题。与化学或热化学过程相比,该过程的生化方面是一种更环保和温和的方法,但没有产生足够的产量(Sato等,2020),因此需要微生物活动。此外,关于从生物质(尤其是纤维素材料)而不是化石燃料的各种燃料和化学物质的生产中,纤维素被认为是生产生物燃料和可再生原料化学品的最合适的原料,