摘要 - Tactile Sensing为增强当今机器人的相互作用功能提供了一个有希望的机会。Biotac是一种常用的触觉传感器,使机器人能够感知并响应物理触觉刺激。然而,传感器的非线性在模拟其行为时构成了挑战。在本文中,我们首先研究了使用温度,力和接触点位置来预测传感器输出的生物酸模拟。我们表明,使用BioTAC温度读数的培训不会在部署过程中产生准确的传感器输出预测。因此,我们测试了三个替代模型,即XGBoost回归剂,神经网络和变压器编码器。我们在没有温度读数的情况下训练这些模型,并对输入向量的窗口大小进行详细研究。我们证明,我们比基线网络实现了统计学上的显着改进。此外,我们的结果表明,在此任务中,XGBoost回归剂和变压器的表现优于传统的馈送神经网络。我们在https://github.com/wzaielamri/optimization Biotac仿真上在线提供所有代码和结果。索引术语 - Biotac,Xgboost,变压器,触觉感知
摘要:通过算法决策系统在各个领域的传播,人们对它们的不透明和潜在的道德后果的关注得到了提高。通过促进可解释的机器学习模型的使用,本研究解决了这些系统中开放性和道德责任的关键要求。可解释的模型提供了对决策的制定方式的透明且可理解的描述,而不是复杂的黑盒算法。用户和利益相关者需要这种开放性,以便理解,验证和负责这些算法的决定。此外,可解释性通过使检测和减少偏见更容易促进算法结果中的公平性。在本文中,我们概述了算法不透明度带来的困难,强调了在各种环境中解决这些困难的关键,包括涉及医疗保健,银行业,刑事司法等的困难。从线性模型到基于规则的系统再到替代模型,我们对可解释的机器学习技术进行了彻底的分析,突出了它们的好处和缺点。我们建议,将可解释的模型纳入算法的设计和使用可能会导致AI在社会中更负责任和道德应用,最终使人们和社区受益,同时降低与不透明决策过程相关的风险。
摘要 - 这项研究提出了一种创新的方法,可用于由四个可压缩肌腱驱动的软执行器启用的软四倍机器人的最佳步态控制。柔软的四足机器人与刚性的机器人相比,已广泛认可,可提供增强的安全性,较低的重量以及更简单的制造和控制机制。然而,它们的高度变形结构引入了非线性动力学,使得精确的步态运动控制复合物。为了解决这一问题,我们提出了一种基于模型的新型增强学习(MBRL)方法。该研究采用多阶段方法,包括国家空间限制,数据驱动的替代模型培训和MBRL开发。与基准方法相比,所提出的方法显着提高了步态控制策略的效率和性能。开发的策略既适合机器人的形态,既适合又有能力。这项研究结论是在实际情况下强调这些发现的实际适用性。索引术语 - 四倍的机器人,软执行器,增强学习,步态控制
摘要近年来,将机械知识与机器学习融合对数字医疗保健产生了重大影响。在这项工作中,我们引入了一条计算管道,以在先天性心脏病的儿科患者中构建心脏电生理学的数字复制品。我们通过半自动分割和网格划分工具来构建患者特定的几何形状。我们生成了一个涵盖细胞到器官级模型参数的电生理模拟数据集,并利用基于微分方程的严格数学模型。我们先前提出的分支潜在神经图(BLNM)是一种准确有效的手段,用于概括神经网络中的复杂物理过程。在这里,我们采用BLNM来编码硅12铅电图(ECGS)中的参数性时间动力学。BLNM充当了心脏功能的几何特异性替代模型,可快速,健壮的参数估计,以匹配小儿患者的临床ECG。通过灵敏度分析和不确定性量化评估校准模型参数的可靠性和可信赖性。
摘要。由于限制了诸如耗电耗电和可扩展性之类的限制,因此对较大的机器学习模型的培训和推断需求不断增加。光学器件是提供较低功率计算的有前途的竞争者,因为通过非吸收介质的光传播是无损操作。但是,要用光进行有用的高效计算,在光学上产生和控制非线性是一种仍然难以捉摸的必要性。多模纤维(MMF)已证明它们可以提供平均功率的微小效应,同时保持并行性和低损失。我们提出了一种光学神经网络体系结构,该体系结构通过通过波前形状控制MMF中超短脉冲的传播来执行非线性光学计算。使用替代模型,发现最佳参数集可以用电子计算机最少利用来为不同的任务编程此光学计算机。与同等执行的数字神经网络相比,模型参数数量的显着降低了97%,这导致总体上99%的数字操作减少。我们进一步证明,还可以使用竞争精确的精度执行完全的光学实现。
摘要 对极重采样旨在生成共轭点位于同一行的归一化图像。这一特性使得归一化影像对于自动影像匹配、空中三角测量、DEM 和正射影像生成以及立体观看等许多应用都十分重要。传统上,归一化过程的输入媒体是帧相机捕获的数字影像。这些影像可以通过扫描模拟照片获得,也可以直接由数码相机捕获。与模拟相机相比,当前的数码帧相机提供的图像格式更小。在这方面,线阵扫描仪正在成为二维数码帧相机的可行替代品。然而,线阵扫描仪的成像几何比帧相机更复杂。一般而言,线阵扫描仪的成像几何会产生非直线的对极线。此外,根据忠实描述成像过程的严格模型对捕获的场景进行对极重采样需要了解内部和外部传感器特性以及物体空间的数字高程模型 (DEM)。最近,平行投影已成为一种替代模型,用于近似具有窄视场角的高空扫描仪的成像几何。与严格模型相比,平行投影模型不需要
这项研究旨在开发替代模型,以加速与碳捕获和存储(CCS)技术相关的决策过程。选择子表面CO 2存储位点通常需要昂贵,并且涉及CO 2流场的模拟。在这里,我们开发了一个基于傅立叶神经操作员(FNO)模型,用于对CO 2羽流迁移的实时高分辨率模拟。该模型经过由现实的子面参数产生的综合数据集训练,并提供O(10 5)计算加速度,并以最少的预测准确性牺牲。我们还探索了超分辨率的概念,以提高培训基于FNO的模型的计算成本。此外,我们提出了各种策略,以改善模型的预测可靠性,这是在评估实际地质地点的同时。基于NVIDIA的模量,这个新型框架将允许对CCS的站点进行快速筛选。讨论的工作流和策略可以应用于其他能源解决方案,例如地热储层建模和氢气。我们的工作量表科学机器学习模型到现实的3D系统,这些系统与现实生活中的地下含水层/储藏室更一致,为下一代数字双胞胎铺平了道路,用于亚面CCS应用程序。
当前的药物发现生成模型主要使用分子对接作为指导活性化合物产生的甲骨文。但是,这种模型在实践中通常没有用,因为即使是具有较高对接得分的化合物也不会始终显示出实验活动。存在更准确的活动预测方法,例如基于分子动力学的结合能量计算,但是在生成模型中使用它们在计算上太昂贵。为了应对这一挑战,我们提出了多保真潜在空间主动学习(MF-lal),这是一种生成的建模框架,将一组与成本准确性的折衷方案集成在一起。与以前分别学习替代模型和生成模型的方法不同,MF-LAL将生成性和多余的代孕模型结合到一个框架中,从而可以进行更准确的活动预测和更高质量的样本。我们使用一种新型的主动学习算法来训练MF-lal,以进一步降低计算成本。我们对两种相关疾病蛋白的实验表明,MF-LAL产生的化合物具有比其他单一单一和多忠诚方法更好的结合自由能评分。该代码可在https://github.com/rose-stl-lab/ mf-lal上找到。
马尔可夫链蒙特卡洛(MCMC)方法的实现需要面对两个有趣的挑战:准确表示先验信息和可能性功能的效果。通常可以通过标准减少维度降低技术(例如主成分分析(PCA))来促进先前分布的定义和采样。此外,基于PCA的分解可以基于多项式混沌扩展(PCE)实现准确的替代模型。wever,具有鲜明对比的内在地质先验可能需要先进的维度减少技术,例如深生成模型(DGM)。尽管适用于先前的抽样,但这些DGM对替代建模构成了挑战。在此贡献中,我们提出了一种MCMC策略,该策略将DGM的高重建性能以变量自动编码器的形式与PCA – PCE替代建模的准确性相结合。此外,我们还引入了一个具有物理信息的PCA分解,以提高准确性并减少与替代建模相关的综合负担。在使用通道的子表面结构的贝叶斯地面雷达旅行时间断层扫描的背景下,我们的方法是例证的,提供了准确的重建和显着的加速速度,尤其是当全相正向模型的计算计算时。
科学发现和工程设计目前受到物理实验的时间和成本的限制,主要是通过需要深入域专业知识的反复试验和直觉选择。数值模拟是物理实验的替代方法,但由于现有数值方法的计算要求,通常对于复杂的现实世界域而言是不可行的。人工智能(AI)通过开发快速数据驱动的替代模型来提出潜在的范式转移。尤其是一个称为神经操作员的AI框架提出了一个原则上的框架,用于在连续域上定义的功能之间学习映射,例如时空过程和部分微分方程(PDE)。他们可以在训练期间看不见的新位置推断和预测解决方案,即执行零拍的超分辨率。神经操作员可以在许多应用中增强甚至替换现有的模拟器,例如计算流体动力学,天气预报和材料模型,而速度更快4-5个数量级。此外,可以将神经操作员与物理和其他领域的约束集成在一起,以获得更高的重点,以获得高保真的解决方案和良好的概括。由于神经操作员是可区分的,因此他们可以直接优化用于反设计和其他反问题的参数。我们认为,神经操作员提出了一种变革性的模拟和设计方法,从而可以快速的研发。