摘要近年来,将机械知识与机器学习融合对数字医疗保健产生了重大影响。在这项工作中,我们引入了一条计算管道,以在先天性心脏病的儿科患者中构建心脏电生理学的数字复制品。我们通过半自动分割和网格划分工具来构建患者特定的几何形状。我们生成了一个涵盖细胞到器官级模型参数的电生理模拟数据集,并利用基于微分方程的严格数学模型。我们先前提出的分支潜在神经图(BLNM)是一种准确有效的手段,用于概括神经网络中的复杂物理过程。在这里,我们采用BLNM来编码硅12铅电图(ECGS)中的参数性时间动力学。BLNM充当了心脏功能的几何特异性替代模型,可快速,健壮的参数估计,以匹配小儿患者的临床ECG。通过灵敏度分析和不确定性量化评估校准模型参数的可靠性和可信赖性。
主要关键词