量子非局域性是多体量子系统的一个典型现象,它没有任何经典对应物。纠缠是最具代表性的非局域量子关联之一,它不能仅通过局域操作和经典通信(LOCC)来实现 1、2。众所周知,量子纠缠的非局域性质可用作许多量子信息处理任务的资源 3。量子非局域现象也可以出现在多体量子态鉴别中,这是量子通信中有效信息传输的重要过程。一般来说,正交量子态可以肯定地加以区分,而非正交量子态则无法做到这种区分。沿着这个思路,需要状态鉴别策略来至少以某个非零概率 4 – 7 鉴别非正交量子态。然而,当可用的测量仅限于 LOCC 测量 8 时,多体量子系统的某些正交态无法肯定地加以区分。由于在没有可能的测量限制时正交态总是能够被确定地区分,LOCC 测量的这种有限的鉴别能力揭示了量子态鉴别中固有的非局部现象。量子态鉴别的非局部现象也可能出现在鉴别多体量子系统的非正交态时;众所周知,某些非正交态不能仅使用 LOCC 9 – 11 进行最佳鉴别。因此,多体量子态 12 – 19 的最佳局部鉴别受到了广泛关注。然而,实现最佳局部鉴别仍然是一项具有挑战性的任务,因为很难对 LOCC 进行很好的数学表征。克服这一困难的一个有效方法是研究最佳局部鉴别的最大成功概率的可能上限。为了更好地理解最佳局部鉴别,建立实现这种上限的良好条件也很重要。最近,在二体量子态的局部最小误差鉴别中建立了最大成功概率的上限。此外,还给出了该上界饱和的必要充分条件20。在这里,我们考虑任意维数的多部分量子态之间的无歧义鉴别(UD)21 – 24,并为最佳局部鉴别的最大成功概率提供上限。此外,我们提供了实现该上界的必要充分条件。我们还建立了该上界饱和的必要充分条件。最后,我们使用多维多部分量子系统中的示例来说明我们的结果。本文组织如下。在“结果”部分,我们首先回顾多体量子系统中可分离算子和可分离测量的定义和一些性质。我们进一步回顾了UD的定义并提供了一些最优UD的有用性质(命题1)。作为本文的主要结果,我们给出了利用一类作用于多体希尔伯特空间的Hermitian算子实现最优局部鉴别的最大成功概率的上界(定理1)。此外,我们给出了Hermitian算子实现该上界的必要充分条件(定理2和推论1)。我们还建立了该上界饱和的必要充分条件(推论2)。我们通过多维多体量子系统中的例子说明了我们的结果(例子1和2)。在“方法”部分,我们提供了定理1的详细证明。在“讨论”部分,我们总结了我们的结果并讨论了与我们的成果相关的可能的未来工作。
在量子计算机上执行量子算法需要编译为符合设备施加的所有限制的表示。由于设备的相干时间和门保真度有限,编译过程必须尽可能优化。为此,首先必须使用设备的门库来合成算法的描述。在本文中,我们考虑 Clifford 电路的最佳合成,它是量子电路的一个重要子类,具有多种应用。此类技术对于建立(启发式)合成方法的下限和衡量其性能至关重要。由于搜索空间巨大,现有的最佳技术最多仅限于六个量子比特。这项工作的贡献有两个方面:首先,我们提出了一种 Clifford 电路的最佳合成方法,该方法基于将任务编码为可满足性(SAT)问题,并使用 SAT 求解器结合二分搜索方案对其进行求解。事实证明,该工具可以合成最多 26 个量子比特的最佳电路,比目前最先进的电路多出四倍多。其次,我们通过实验表明,最先进的启发式方法引入的开销平均比下限高出 27%。该工具可在 https://github.com/cda-tum/qmap 上公开获取。
摘要 住宅供暖和制冷行业日益电气化,主要使用电动热泵 (HP) 与热能/电能存储系统相结合。虽然这些发展有助于增加该行业中可再生和低碳能源的份额,但要充分利用该技术的潜力,需要对这些系统进行智能控制,以考虑未来预测的可再生能源可用性和相应的 HP 系统性能。然而,以适合智能控制的方式对具有复杂内部动态的系统进行建模具有挑战性。模型需要足够复杂才能准确捕捉系统的非线性和复杂性,同时又要足够快,以便在合适的计算时间内彻底搜索解空间。动态规划 (DP) 是一种很有前途的智能控制方法,因为它结合了使用复杂非线性模型的能力,同时是一种穷举搜索算法,保证找到全局最优值。本文介绍了一个创新的建模框架,该框架包含 HP 变电站主要组件(即 HP 和热能存储 - TES)的降阶模型 (ROM),以适合在 DP 中使用的方式进行阐述;这些模型包括影响系统性能的重大物理操作约束(例如,HP 压缩机变速、非线性性能系数 - COP - 依赖于室外和配送温度),同时最大限度地减少优化器需要处理的状态变量数量(即 TES 温度、HP 热容量和电容量)。在应用于示例 HP 系统时,我们的系统模型与用作参考基础事实的详细 TRNSYS 对应模型相比表现出色。该系统通过动态规划优化方法实现了显着的成本节约,与传统的基于规则的控制相比,功耗降低了 13%。
摘要 — 使资源有限的机器人能够执行计算密集型任务(例如移动和操作)是一项挑战。本项目提供了全面的设计空间探索,以确定适合基于模型的控制算法的最佳硬件计算架构。我们对通用标量、矢量处理器和专用加速器中的代表性架构设计进行了分析和优化。具体来说,我们使用内核级基准和端到端代表性机器人工作负载来比较标量 CPU、矢量机和领域专用加速器。我们的探索提供了定量的性能、面积和利用率比较,并分析了这些具有代表性的不同架构设计之间的权衡。我们证明架构修改、软件和系统优化可以缓解瓶颈并提高利用率。最后,我们提出了一种代码生成流程,以简化将机器人工作负载映射到专用架构的工程工作。
摘要。本文提出了一个能源混合系统能源规划的多目标问题。该问题考虑三个主要目标:最大限度地减少发电侧的排放污染和运营成本、解决消费者对电力需求的不满以及减少未来 24 小时内与最佳水平的偏差以平缓需求曲线。为了实现这一目标,实施了需求灵活性策略,包括使用可延迟负荷对电力需求进行最佳转移。所提出的方法利用增强的 epsilon 约束方法来确定目标的帕累托解。此外,还采用 TOPSIS 决策技术从一组帕累托解中选择最优解。通过两个案例研究验证了所提出方法的有效性和稳健性。总体而言,本文强调了在混合系统的能源调度中考虑多目标的重要性,并证明了所提出的方法在实现环境、经济和消费者满意度目标之间的平衡方面的有效性。需求灵活性策略和多目标优化技术的使用可以显著改善能源系统的运行,为更高效的能源管理实践铺平道路。与没有实施需求侧管理相比,实施需求侧管理已使第一和第二个目标分别显著减少了 2.8% 和 64.9%。
在对模型进行网格划分时,需要根据具体的模型结构和环境选择合适的网格类型和参数[37]。一方面,由于修改后的基体结构完整,代表主要受力区域,加上滚动轴承区域结构重要,因此可以直接对模型进行网格划分。这样网格密度好,网格参数为基于曲率的网格。另一方面,由于球内存在扭曲单元,且球数量较大,需要对球进行批量处理。这样网格密度好,网格参数为基于曲率的网格。两者整体尺寸均为9.522 mm,公差为0.476 mm。模型网格划分结果如图所示。12.
摘要。本文提出了一种新方法,以增强保形映射在地形跟随 (TF) 和地形规避 (TA) 飞行中最佳轨迹规划过程中的应用。新方法使用保形映射概念作为修饰工具,将由于存在障碍物而导致飞行高度受限的受限轨迹规划问题转换为没有障碍物和最小高度约束的再生问题。在这方面,利用 Schwarz-Christoel 定理将高度约束纳入飞机动态运动方程。然后通过数值方法(即直接 Legendre-Gauss-Radau 伪谱算法)求解再生的最优控制问题。优化了飞行时间、地形遮蔽和气动控制力的综合性能指标。此外,为了获得真实的轨迹,在求解算法中将飞机的最大爬升率和下降率作为不等式约束。二维飞行场景的几个案例研究表明该方法在 TF/TA 轨迹规划中的适用性。大量模拟证实了所提方法的有效性,并验证了解决方案的可行性,满足了问题的所有约束。
我们开发了一种探针-样品相互作用中有限耦合量子测温的一般微扰理论,最高可达二阶。根据假设,探针和样品处于热平衡状态,因此探针由平均力吉布斯态描述。我们证明,仅通过对探针进行局部能量测量,就可以实现最终的测温精度——耦合精度达到二阶。因此,在这种情况下,试图从相干性中提取温度信息或设计自适应方案不会带来任何实际优势。此外,我们为量子 Fisher 信息提供了一个闭式表达式,它捕捉了探针对温度变化的敏感性。最后,我们用两个简单的例子来衡量和说明我们公式的易用性。我们的形式化方法没有对动态时间尺度的分离或探针或样品的性质做出任何假设。因此,通过提供对热灵敏度和实现它的最佳测量的分析见解,我们的结果为在有限耦合效应不能忽略的装置中进行量子测温铺平了道路。
摘要 —近年来,量子计算界见证了大量在近期硬件上实现非平凡量子计算的新方法。一个重要的研究方向是将任意纠缠态(表示为幺正)分解为量子电路,即量子处理器支持的一系列门。众所周知,对于当前嘈杂的中等规模量子设备而言,分解时间较长和多量子比特门纠缠较多的电路容易出错。为此,人们对开发基于启发式的方法来发现紧凑电路产生了浓厚的兴趣。我们为此做出了贡献,提出了 QuantumCircuitOpt (QCOpt),这是一个新颖的开源框架,它实现了数学优化公式和算法,用于将任意幺正门分解为一系列硬件原生门。QCOpt 的一个核心创新是它为其生成的量子电路提供最优性保证。具体来说,我们表明 QCOpt 可以将最多四个量子比特的电路中所需的门数量减少 57%,并且在商用计算硬件上的运行时间不到几分钟。我们还通过与简单的强力枚举算法进行比较,验证了 QCOpt 作为量子电路设计工具的有效性。我们还展示了 QCOpt 包如何适应各种内置类型的本机门集,这些门集基于不同的硬件平台,例如 IBM、Rigetti 和 Google 生产的硬件平台。我们希望这个包将促进量子处理器设计人员以及量子物理学家进一步探索算法。
发射场位置选择是航天工业中一个关键的管理和技术决策问题。从大量基本因素、考虑因素和预先请求中获得的标准为评估过程提供了输入。决策者在评估阶段考虑各个方面来评估许多候选发射场位置。最近开发的最佳最差方法是一种多标准决策过程,旨在评估这项工作中标准的权重。使用所提出的方法评估了技术、商业和安全(主要标准)的权重以及十二个子标准。使用 BWM 确定标准的权重以及技术、管理重点因素的重要性。结果有助于管理员选择最佳优先发射场。最佳最差方法提供可靠且可用的结果,这些结果也与其他评估一致。使用 Ben-Tal 最佳和最差方法分析了与输入参数相关的不确定性。以土耳其为例,锡诺普被选为土耳其各省最佳优先发射场,索马里是四个候选发射场中最佳的发射场位置。适当建立的发射场有助于成功进入太空。