最佳运输,也称为运输理论或Wasserstein指标,是一个数学框架,它解决了找到最有效的方法将质量或资源从一个分布转移到另一种分布的最有效方法的问题,同时最大程度地减少了一定的成本函数[1,2,3]。最初在18世纪作为物流和经济学工具开发,最佳运输在现代数学和各种科学学科(包括计算机科学和机器学习)上引起了极大的关注。在其核心方面,最佳运输旨在通过找到将一个分布的质量重新分配以匹配另一个位置的成本,从而量化两个概率分布之间的相似性。这个优雅而多才多艺的概念在不同领域中发现了从图像处理和数据分析到经济学[11]和神经科学的应用,使其成为具有广泛含义的强大而统一的数学工具[12]。
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
摘要 激光直接金属沉积 (DMD) 已发展成为一种在现有材料上沉积涂层的制造工艺,并在复杂精密部件的增材制造 (AM) 中被证明具有优势。然而,必须仔细确定适当的工艺参数组合,以使这种方法在工业上经济可行。本研究旨在提高不锈钢 EN X3CrNiMo13-4 的激光 DMD 的生产率。据此,讨论了激光功率 P、扫描速度 v、粉末流速 ̇ m 和光斑直径 s 等主要激光工艺参数对轨道几何形状和堆积率的影响。进行回归分析以推导主要参数组合与沉积速率之间的相关性。结果显示,对于长宽比、稀释度和沉积速率的几何特性,线性回归相关性良好,R 2 >0.9。使用线性回归方程构建的加工图展示了与沉积速率、长宽比和稀释度相关的适当工艺参数选择。
什么是儿童健康检查?儿童健康检查有助于我们确保您的孩子健康成长。即使感觉良好,您的孩子也应定期参加这些检查,这一点很重要。儿童健康检查有助于我们了解您的孩子并尽早发现问题(例如生长、发育或其他医疗保健问题)。即使您的孩子因其他疾病而定期就诊,这些检查对于跟踪他们的成长和发育也很重要。如果可能,主要照顾者最好能参加这些检查。这些检查让您和您的提供者有机会相互了解、提出问题并获得答案。您的提供者将讨论一些重要主题。这些包括:
量子机学习模型与其经典同行相比,有可能提供加速和更好的预测精度。然而,这些量子算法与它们的经典算法一样,也已被证明也很容易受到输入扰动的影响,尤其是对于分类问题。这些可能是由于嘈杂的实现而引起的,也可以作为最坏的噪声类型的对抗性攻击。为了开发防御机制并更好地理解这些算法的可靠性,在存在自然噪声源或对抗性操纵的情况下了解其稳健性至关重要。从量子分类算法涉及的测量值是自然概率的,我们发现并形式化了二进制量子假设测试与可证明可证明可靠的量子分类之间的基本联系。此链接导致紧密的鲁棒性条件,该条件对分类器可以忍受的噪声量构成约束,而与噪声源是自然的还是对抗性的。基于此结果,我们开发了实用协议以最佳证明鲁棒性。最后,由于这是针对最坏情况类型的噪声类型的鲁棒条件,因此我们的结果自然扩展到已知噪声源的场景。因此,我们还提供了一个框架来研究量子分类方案的可靠性,超出了对抗性,最坏情况的噪声场景。
peo 1 3 3 3 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
大肠疾病属由几种物种和神秘的进化枝组成,包括e。大肠杆菌,表现为脊椎动物的肠道共生,也是腹泻和肠外疾病的机会性病原体。为了表征该属内肠外毒力的遗传确定者,我们对代表Escherichia Genus Genus Genologenogencementic多样性的370个共生,致病性和环境菌株进行了一项无偏的基因组研究(GWAS)研究(GWAS)。albertii(n = 7),e。fergusonii(n = 5),大肠杆菌(n = 32)和e。大肠杆菌(n = 326),在败血症的小鼠模型中进行了测试。我们发现,编码Yersiniabactin siderophore的A高致病岛(HPI)的存在与小鼠的死亡高度相关,与其他相关遗传因素相关,也超过了与铁的摄取相关的其他相关遗传因素,例如Aerobactin和Sitabcd operons。我们通过删除e中HPI的关键基因来确认体内关联。大肠杆菌菌株在两个系统发育背景下。然后,我们在E的一部分中搜索了毒力,铁捕获系统和体外生长之间的相关性。大肠杆菌菌株(n = 186)先前在生长条件下表型,包括抗生素以及其他化学和物理胁迫。我们发现,在存在大量抗生素的情况下,毒力和铁捕获系统与生长呈正相关,这可能是由于毒力和耐药性的共选择。我们还发现在存在特定抗生素的情况下毒力,铁摄取系统与生长之间的负相关性(i。e。头孢霉素和毒素),这暗示了与内在毒力相关的潜在“侧支敏感性”。这项研究表明铁捕获系统在大肠疾病的肠外毒力中的主要作用。
/#! “#$%”#&%$'!'“%! div>%“”“!” #!%“” $“#$$” $!* $ +!“#,!“ $ *”%“” *“%” $$#
