Navid 在日立 ABB 电网公司拥有 13 年的工作经验,担任过不同的职务,例如科学家、GIS 研发经理、高效 GIS 和 HV CB GIS 全球产品经理。他目前负责高压产品的生态高效组合。
针对深厚复合地层TBM隧道小比例模型试验中开挖、管片模拟、变形、受力等难题,综合利用TBM模拟实验装置、模型管片环预制装置、数字摄影测量技术,提出计算方法。通过对围岩变形特征及破裂分析,揭示了围岩变形的时空效应:(1)无支撑时,围岩变形的时空效应集中在以下工况:随着时间的推移,围岩变形从复合地层交界处的拱腰两侧开始,衍生出四个圆弧并发生剪切滑移,导致整体垮塌破坏。(2)支撑后,围岩变形的时空效应集中在围岩与支撑相互作用的3个阶段,即初期阶段、平衡过程和失稳状态。空间效应集中在围岩变形破坏区域,最严重区域为浅层围岩,次剧烈区域为边墙拐角处。
在此示例中,我们说明了缓冲模式下 Advantech 设备的 AI 的使用。设置缓冲模式的最佳方法是使用 Advantech GUI。但是,用户应该知道,缓冲模式的 GUI 中设置的参数存储在 MatDeck 文档中,而不是设备中。这就是为什么我们必须从表单中导出设备句柄以供进一步使用的原因。
29] 及其中的参考文献)。在演化过程中,薄膜/蒸汽界面可能会发生复杂的拓扑变化,如夹断、分裂和增厚,这些变化都给该界面演化的模拟带来了很大困难。[1] 提出了一种相场模型,该模型可以自然地捕捉形态演化过程中发生的拓扑变化,并且可以轻松扩展到高维空间,其中采用了稳定化方案的谱方法。相场方法的思想可以追溯到 [22] 和 [30] 的开创性工作。从那时起,它已成功应用于许多科学和工程领域。相场法使用辅助变量 φ(相场函数)来局部化相并用一层小厚度来描述界面。相场函数在两个相中分别取两个不同的值(例如 +1 和 −1),并在整个界面上平滑变化。在相场模型中,界面被视为过渡层,界面上某些物理量会连续但急剧地发生变化。相场模型可以从变分原理自然推导出来,即通过最小化整个系统的自由能。结果,导出的系统满足能量耗散定律,证明了其热力学一致性,并得到了一个数学上适定的模型。此外,能量定律的存在为设计能量稳定的数值方案提供了指导。相场方法现在已成为研究界面现象的主要建模和计算工具之一(参见[8–13,20,25,26]及其参考文献)。从数值角度来看,对于相场模型,数值近似中的一个主要挑战是如何设计无条件的能量稳定方案,使半离散和全离散形式下的能量都保持耗散。能量耗散定律的保持尤为重要,对于排除非物理数值解至关重要。事实上,已经观察到不遵守能量耗散定律的数值格式可能导致较大的数值误差,特别是对于长时间模拟,因此特别需要设计在离散级别保持能量耗散定律的数值格式。开发用于近似相场模型的数值格式的另一个重点是构建高阶时间推进格式。在一定精度的要求下,当我们想要使用更大的时间推进步骤来实现长时间模拟时,高阶时间推进格式通常比低阶时间推进格式更可取。这一事实促使我们开发更精确的格式。此外,不言而喻,线性数值格式比非线性数值格式更有效,因为非线性格式的求解成本很高。在本文中,我们研究了基于 SAV 方法的线性一阶和二阶时间精确、唯一可解且无条件能量稳定的数值格式,用于解决固态脱湿问题相场模型,该 SAV 方法适用于一大类梯度流 [15, 16]。引入辅助变量的梯度流格式首次在 [23,24] 中提出,称为不变能量二次化 (IEQ) 方法,其中辅助变量是一个函数。SAV 方法的基本思想是将梯度流的总自由能 E (φ) 分为两部分,写为
。CC-BY-NC-ND 4.0 国际许可,根据 未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是 由 此预印本的版权持有者(此版本于 2020 年 5 月 5 日发布。 ; https://doi.org/10.1101/2020.05.04.077115 doi: bioRxiv preprint
相场方法的思想可以追溯到 [22] 和 [30] 的开创性工作。从那时起,它已成功应用于许多科学和工程领域。相场法使用辅助变量 ϕ(相场函数)来局部化相并用一层厚度较小的层来描述界面。相场函数在两个相中分别取两个不同的值(例如 +1 和 −1),并在整个界面上平滑变化。在相场模型中,界面被视为过渡层,在该过渡层上某些物理量会连续但急剧地发生变化。相场模型可以从变分原理自然推导出来,即通过最小化整个系统的自由能。因此,推导出的系统满足能量耗散定律,这证明了其热力学一致性并可得到一个数学上适定的模型。此外,能量定律的存在为设计能量稳定的数值方案提供了指导。相场法现在已成为研究界面现象的主要建模和计算工具之一(参见[8–13,20,25,26]及其参考文献)。