方法此机器学习模型是在Google Colab中编码的,我们使用了编程语言Python。我们使用诸如Pandas,KneighBorsRegressor和Train_test_split之类的库进行数据操纵,构建和培训机器学习模型,以及对模型的测试和验证。KNN模型使用7个邻居来预测测试数据集目标。将培训和测试数据集加载到熊猫数据框架上进行数据操作。然后,我们通过将功能与目标分离来分开训练数据集。培训数据集被拆分,其中80%的数据用于培训,其余数据用于验证。我们在培训数据集上训练KNN模型。然后该模型预测目标。我们使用均方根误差来评估预测。
衰老是一种影响多器官系统的复杂多维,进行性重塑过程。尽管许多研究重点是研究跨多个器官的衰老,但评估单个器官对整体衰老过程的贡献是一个尖端问题。一个器官的生物年龄可能会影响其他器官的衰老,从而揭示了多器官衰老网络。最近的数据显示出类似但异步的人际关系和个体间衰老的进展,从而为跟踪老年健康状况下降的基础提供了基础。通过人工intel Ligence将多个OMIC与常见的临床参数整合在一起,允许建立器官特异性的老化时钟,这可以预测高分辨率以高分辨率的特定年龄相关疾病的发展。奇特的个体老化 - 指标(称为年龄型)可能为个性化的抗衰老,预防医学提供新颖的工具。在这里,我们回顾了相对于生物逻辑老化时钟和基于OMICS的数据的数据,提出了不同的器官特异性衰老率。应鼓励对纵向数据的其他研究,包括年轻受试者和分析与性别相关的差异,以在临床实践中应用年龄分型分析以进行预防目的。
通过谱系可塑性和发散的克隆进化(3,5-7)。CRPC-NE患者通常通过类似于小细胞肺癌(SCLC)的化学疗法方案进行积极治疗,并且还在进行几项CRPC-NE指导的临床试验。当前CRPC-NE的诊断仍然存在,因为需要转移活检以及室内肿瘤异质性。浆细胞-FRE-FREDNA(CFDNA)的DNA测序是一种无创的工具,可检测CER中的体细胞改变(8)。但是,与CRPC-Adeno相比,癌症特异性突变或拷贝数的变化仅在CRPC-NE中适度富集(3,9)。相反,我们和其他人观察到与CRPC-NE相关的广泛的DNA甲基化变化(3,10),并且可以在CFDNA中检测到这种变化(11,12)。DNA甲基化主要是在CpG二核苷酸上进行的,并且与广泛的生物学过程有关,包括调节基因的表达,细胞命运和基因组稳定性(13)。此外,DNA甲基化是高度组织特异性的,并提供了强大的信号来对原始组织进行反v,从而允许增强循环中低癌部分的检测(16、17),并已成功地应用于早期检测和监测(18,19)。如前所述,可以用甲硫酸盐测序来测量基础分辨率下的DNA甲基化,该测序为每种覆盖的CpG提供了一小部分甲基化的胞质的β值的形式,范围为0(无甲基化)至1(完全甲基化)。低通序测序遭受低粒度,并以粗分辨率捕获所有区域。原则上,诸如全基因组Bisulfite CFDNA测序(WGB)之类的方法可以很好地了解患者的疾病状况,并具有最佳的甲基化含量信息。实际上,鉴于高深度全基因组测序的成本,WGB的低通型变种适用于大规模的临床研究。鉴于此上下文中的大多数CPG站点可能是非信息或高度冗余的,我们旨在将测序空间减少到最小设置
最近,对不同深度神经网络(DNNS)架构的平行杂交模型的持续发展,越来越多的兴趣激增,以保持有用寿命(RUL)估计。在这方面,本文在文献中的第一次介绍了一种新的基于Hybrid DNN的框架,用于RUL估算,称为嘈杂的多径平行混合模型,用于剩余有用的寿命估计(NMPM)。提议的NMPM框架是三个平行路径的编写,第一个使用了一个嘈杂的双向长短术语记忆(BLSTM),用于提取时间特征并学习在两个方向,正向和后门中学习序列数据的依赖。第二个平行路径采用嘈杂的多层感知器(MLP),由三层组成以提取不同特征类别的层。第三个平行路径利用嘈杂的卷积神经网络(CNN)来提取特征的组成类。然后将三个平行路径的串联输出送入嘈杂的融合中心(NFC)以预测RLU。提出的NMPM已根据嘈杂的训练机制进行了培训,以增强其泛化行为,并增强模型的整体准确性和鲁棒性。使用NASA提供的CMAPS数据集对NMPM框架进行了测试和评估,该数据集说明了卓越的性能与最先进的对应物相比。