1哥伦比亚大学拉蒙特·多尔蒂(Lamont Doherty)地球天文台2库兰特数学科学研究所,纽约大学3大气与海洋科学课程,普林斯顿大学4地球与环境工程,哥伦比亚大学5号,哥伦比亚大学5皇后玛丽玛丽大学伦敦皇后大学6 Univ 6 Univ。Grenoble Alpes,CNRS,IRD,Grenoble INP,INRAE,IGE,IGE,38000 GRENOBLE,法国7海洋建模和数据同化部,Fondazione Centro Euro -Mediterraneo Suii suii cambiamenti cambiamenti chilcatigi cliaigiani -cmcc 8马萨诸塞州理工学院的地球,大气和行星科学部11地球,大气和行星科学系11国家大气研究中心13纽约大学14哥伦比亚大学哥伦比亚大学哥伦比亚气候学校15 Schmidt Futures
;dfh;]jf;f]r] h:tf];lhnf] sfd kSs} xf]Og。;dfh ;dfh ;]jf ;f]r] h:tf] ;lhnf] sfd kSs} xf]Og .;dfh ;]jfk|lt Jofks b[li6sf]0f gx'g] xf] eg] ;fdflhs sfo{df ;]jfk|lt Jofks b[li6sf]0f gx'g] xf] eg] ;fdflhs sfo{df ;FnUg x'g sl7g x'G5 .;–;fgf s'/fdf klg To;n] c8\sf] ;FnUg x'g sl7g x'G5 .;–;fgf s'/fdf klg To;n] c8\sf] nufpg ;S5,t/,ha ;dfh ;]jfsf] nx/df Pp6f dflg; nufpg ;S5,t/,ha ;dfh ;]jfsf] nx/df Pp6f dflg; t/lËt x'G5, p;n] st} x]b}{g, a;\ ;dfh ;]jfdf lg/Gt/ t/lËt x'G5, p;n] st} x]b}{g, a;\ ;dfh ;]jfdf lg/Gt/ nflu/xG5 。哦; cy{df x]bf{ s] klg eGg ;lsG5 eg] nflu/xG5 。哦; cy{df x]bf{ s] klg eGg ;lsG5 eg] Åbodf ;dfh ;]jfsf] Kof; af]s]/ lxF8\g]x¿n] dfq} ;]jfnfO{ Åbodf ;dfh ;]jfsf] Kof; af]s]/ lxF8\g]x¿n] dfq} ;]jfnfO{ cfˆgf] d"ndGq agfpg ;S5 / o;/L ;]jfefjsf] Kof; cfˆgf] d"ndGq agfpg ;S5 / o;/L ;]jfefjsf] Kof; af]s]/ lxF8\g] / ;dfhsf nflu s]xL ug]{ x'6x'6Lsf;fy nfUg] af]s]/ lxF8\g] / ;dfhsf nflu s]xL ug]{ x'6x'6Lsf;fy nfUg] ;dfh;]jLx¿s} ;lqmotfsf sf/0f cfh x]Nk g]kfn g]6js{n] ;dfh;]jLx¿s} ;lqmotfsf sf/0f cfh x]Nk g]kfn g]6js{n] @%cf}F jflif{sf]T;j dgfpFb} 5 .x]Nk g]kfndf cfj4 xhf/f}F @%cf}F jflif{sf]T;j dgfpFb} 5 .x]Nk g]kfndf cfj4 xhf/f}F:jod\;]jsx¿sf];dfh;]jfk|ltsf] nufjn]g} cfh of]:jod\;]jsx¿sf];dfh;]jfk|ltsf] nufjn]g} cfh of]cj:yf l;h{gf ePsf] xf]。cj:yf l;h{gf ePsf] xf].
注意:对于SAA转换器,在转换时间点之前和之后提供了队列特征(即分别使用CSF 𝛼 -SYN SAA-的最后一个时间点,分别与CSF 𝛼 -SYN SAA +的第一个时间点)。n(%),用于连续变量的中位数(IQR)。在支持信息中,表S1提供了临床和生物标志物数据的数据计数和百分比。缩写:β,淀粉样蛋白β; ADAS-COG11,阿尔茨海默氏病评估量表认知子量表11-项目; Ancova,协方差分析;方差分析,方差分析; apoe,载脂蛋白E; CDR-SB,临床痴呆评级盒子的总和; CSF,脑脊液;铜,认知没有受损; MCI,轻度认知障碍; MMSE,小型国会考试; PACC,临床前阿尔茨海默氏症的认知复合材料; p-tau181,磷酸化的tau181; SAA,种子扩增测定法。皮尔森的卡方测试。b单向方差分析。c Fisher精确测试。d Ancova针对年龄,性别,教育,诊断和APOE进行了调整。e Ancova针对年龄,性别,教育,APOE,诊断和CSFAβ42状态进行了调整。f逻辑回归针对年龄,性别,教育,诊断和APOE进行了调整。g配对t检验:所有连续变量; McNemar测试:所有二进制变量;配对标志测试:诊断。
摘要 21 世纪见证了语言学的突破性进步,特别是通过人工智能 (AI) 和自然语言处理 (NLP) 的融合。本文探讨了语言学与人工智能和 NLP 技术的交集,重点介绍了这些创新如何重塑了我们对语言、交流和计算语言学的理解。本文深入探讨了 NLP 的演变、理解和生成人类语言的机器学习模型的发展,以及人工智能驱动的工具对语言研究和语言教学的影响。讨论进一步涵盖了语言多样性、计算限制和人工智能语言应用中的道德考虑等挑战。最后,本文展望了语言学的未来,提出了人类语言和人工智能之间的动态协同作用。关键词:语言学、人工智能、自然语言处理、计算语言学、机器学习、语言技术、语言理解、语言生成、人工智能伦理、语言多样性。
定义AI是一个广阔的领域,在历史上认为需要人类智能的每种形式任务的计算机。llms是AI最近的突破,允许计算机生成似乎来自人类的文本。llms涉及语言的生成,而更广泛的术语生成的AI也可以包括AI生成的图像或无花果。chatgpt是最早且广泛使用的LLM之一,但其他公司也开发了类似的产品。llms“学习”以对大规模文本训练数据库中的单词序列进行多方面分析,并使用复杂的概率模型生成新的单词序列。该模型具有随机的组件,因此对完全相同的提示子插条多次响应不会是基本的。llms可以生成看起来像《响应中医学期刊》文章的文本
摘要:游戏、玩耍和游戏化是公共图书馆组织项目中使用的方式,可以吸引更多的受众,尤其是那些对阅读还不感兴趣的人。通过这种方式,与图书馆的联系将使他们能够了解这些文化机构提供的其他资源,从而鼓励他们成为非游戏服务的常客。本文旨在了解这些新方法是否已在布加勒斯特大都会图书馆面向公众开展的活动中得到使用。罗马尼亚对公共图书馆的游戏、玩耍和游戏化的研究非常有限,它可以使研究人员和图书馆员都受益。对布加勒斯特大都会图书馆 2023 年在 Facebook 上发布的帖子进行了内容分析。研究结果表明,游戏、玩耍和游戏化主要用于结合阅读、学习和创意研讨会的主题活动。与机构、协会和其他组织的合作提高了所提供服务的质量。这项研究的价值在于它展示了图书管理员使用游戏、玩耍和游戏化的活动,从而为所有罗马尼亚图书管理员提供了在公共图书馆更大规模地实施这些工具的想法。
人工智能 (AI) 系统设计中的道德责任 David K. McGraw 1 摘要 本文旨在概述人工智能 (AI) 系统设计者的责任所涉及的道德问题。首先,作者深入探讨了这一责任的哲学基础,研究了各种伦理理论,以了解个人对他人和社会的道德义务。作者认为,技术设计者有责任考虑其创作的更广泛社会影响。随后,作者仔细研究了人工智能系统与传统技术相比是否具有独特的道德问题这一基本问题,指出了复杂性、不透明性、自主性、不可预测性、不确定性以及重大社会影响的可能性等因素,并认为人工智能算法的独特特征可能会产生新的道德责任类别。最后,本文提出了一个框架和策略,用于对人工智能设计师的责任进行伦理考虑。关键词:人工智能(AI)伦理、负责任的人工智能设计、人工智能伦理框架、技术哲学 简介 近年来,人工智能(AI)引起了公众的关注,人们对这项快速发展的技术的变革潜力既感到兴奋又感到担忧。随着人工智能系统变得越来越复杂并融入我们的日常生活,人们越来越认识到,这些技术的开发和部署引发了深刻的伦理问题。突然之间,“人工智能伦理”话题成为一个热门话题,引起了政策制定者、行业领袖、学术研究人员和普通公众的关注。这种广泛关注的背后是人们对人工智能变得越来越普及可能产生的社会影响和意想不到的后果的共同担忧。那些创造、实施和使用这些强大且具有潜在破坏性的技术工具的人的道德义务是什么?这是围绕人工智能的人类伦理的新兴讨论的核心问题。在《国际责任期刊》(IJR)的创刊号上,创始主编 Terry Beitzel 解释说,“责任”一词可以涵盖从道德到法律概念的一系列含义。这次讨论的核心是道德的基本问题。然而,Beitzel 总结说,IJR 的重点大致是“由‘谁或什么负责为谁做什么以及为什么?’ (2017, p. 4) 这个问题定义和激发的各种复杂问题”。本文就该问题展开研究,但缩小了这一更广泛范围,以探讨与人工智能 (AI) 系统相关的具体道德责任。Rachels 将“最低限度的道德概念”定义为“至少,努力用理性指导一个人的行为——即
阿尔茨海默氏病(AD)是具有复杂起源的老年人中的主要痴呆症。尽管广泛研究了与AD相关的蛋白质编码基因,但非编码RNA(NCRNA)和转录后修饰(PTM)的参与尚不清楚。在这里,我们全面地描述了来自西奈山/ JJ山彼得斯·彼得斯医学中心大脑脑库研究和蛋黄酱的1460个大脑区域中NCRNA和PTM事件的景观,包括33,321个长NCRNAS,ncrnas,92,897 Enternative Enternation and Hancer rnas,53,763,763,763,763,763 3,763, A到I RNA编辑事件。我们还确定了25,351个异常表达的NCRNA,并改变了与AD性状相关的PTM事件,并进一步鉴定了相应的蛋白质编码基因来构建调节网络。此外,我们开发了一个用户友好的数据门户,Adatlas,促进用户探索我们的结果。我们的研究旨在为AD中的NCRNA和PTM建立一个综合数据平台,以推动相关研究。
摘要:船上的高级地静力辐射成像仪(AGRI)卫星4A(FY-4A)卫星提供可见的辐射,其中包含有关云和降水量的关键信息。在这项研究中,使用局部粒子细胞(PF),通过观察系统模拟实验(OSSE)评估了同化Fy-4a /agri全套可见辐射对对流系统模拟的影响。将局部PF与天气研究和预测模型(WRF)模型相结合的数据同化研究床(DART)实施。为期2天的数据AS-SIMILATION(DA)实验的结果在天气量表上产生了令人鼓舞的结果。与局部PF相关的FY-4A /Agri可见的辐射显着改善了云水路路径(CWP),云覆盖率,降雨速率和降雨面积的分析和预测。此外,在多云地区附近的温度和水蒸气混合比产生了一些积极影响。敏感性研究表明,最佳结果是通过与模型网格间距(20 km)和足够短的循环间隔(30分钟)相当的定位距离来实现的。但是,由于可见的辐射中缺乏相关信息,局部PF无法改善云垂直结构和云相。此外,将局部PF与集成调节器(EAKF)进行了比较,并且表明即使在后者的集合成员的数量增加一倍的情况下,局部PF的表现也超过了EAKF,这表明局部PF的巨大潜力在吸收了可见的可见光范围内。