大型强子对撞机(LHC)是一种新的科学工具。工具(用于辅助观察和测量的仪器)的发明对科学的进步至关重要。尽管关于纯研究和应用研究的相对优点存在激烈的争论,但仪器对这两个分支都至关重要,是一座和谐的桥梁。在十九世纪末和二十世纪初,基础研究和应用研究的进步被用于创造更强大的工具。其中许多是为了舒适和娱乐而设计的,但它们用于增进对自然的理解引领了潮流。这真的很舒服:研究创造了新知识,这使得创造新仪器成为可能,这使得发现新知识成为可能。举个例子:伽利略在荷兰听说了他们的发明后,建造了许多望远镜。在一个令人震惊的周末,他将望远镜转向天空,发现了木星的四颗卫星!这让他确信地球确实在运动,正如哥白尼所推测的那样。望远镜的进化最终让人类能够测量出我们宇宙的浩瀚,宇宙中有数十亿个星系,每个星系都有数十亿个太阳。在更复杂的科学中,开发出了更强大的望远镜。与我们关于 LHC 的书相关的另一个例子是:电子的结构和特性是人们在了解世界如何运作的伟大探索中所能获得的最基本的东西。但其中许多特性使电子成为无数仪器中的重要组件。电子发出 X 射线用于医疗用途和确定生物分子的结构。电子束制造了示波器、电视机以及实验室、医院和家庭中数以百计的设备。一项令人印象深刻的技术使粒子加速器中的高能电子束得以控制。这些是在 20 世纪 30 年代发明的,可提供有关原子大小、形状和结构的精确数据。为了探测原子核,需要更高的能量,质子加速被添加到物理学家的工具箱中。
行星科学 3,120.4 3,200.0 3,383.2 3,265.8 3,246.1 3,350.8 3,389.7 行星科学研究 309.0 -- 307.4 333.3 352.0 360.2 386.4 行星科学研究与分析 221.3 -- 224.6 249.3 261.5 267.4 290.3 其他任务与数据分析 87.8 -- 82.8 84.0 90.5 92.8 96.2 行星防御 166.0 137.8 250.7 337.7 400.5 299.6 79.0 NEO 勘测者 110.0 90.0 209.7 296.7 358.5 257.6 39.0 其他任务和数据分析 56.0 -- 41.0 41.0 42.0 42.0 40.0 月球发现和探索 478.8 -- 458.5 459.0 460.5 472.0 483.3 VIPER 112.2 97.2 61.3 33.0 -- -- -- 其他任务和数据分析 366.5 -- 397.2 426.0 460.5 472.0 483.3 发现号 331.8 -- 247.5 386.4 426.0 579.2 625.9 灵神号 163.8 109.3 57.7 34.5 34.5 37.1 15.4 DAVINCI 12.4 -- 55.8 173.0 201.2 268.6 213.0 VERITAS 14.4 -- 1.5 1.5 1.5 1.5 1.5 其他任务和数据分析 141.1 -- 132.5 177.5 188.8 272.0 396.0 New Frontiers 283.7 -- 407.5 447.8 386.1 367.3 337.5 Dragonfly 219.1 400.1 327.7 355.5 274.8 207.7 24.8 其他任务和数据分析 64.6 -- 79.9 92.3 111.3 159.6 312.7 火星探索 265.0 -- 268.6 279.2 311.6 315.3 367.2 其他任务和数据分析 265.0 -- 268.6 279.2 311.6 315.3 367.2 火星样品返回 653.2 822.3 949.3 700.0 600.0 612.1 627.6 外行星和海洋世界 484.3 -- 318.4 121.3 134.8 178.3 321.9 木星 木卫二 472.1 345.0 303.3 100.8 80.6 77.7 84.0 其他任务和数据分析 12.2 -- 15.1 20.6 54.2 100.6 237.9 放射性同位素功率 148.6 -- 175.5 201.1 174.6 166.8 160.9
航空航天环境是 RSESS 重点领域的核心课程,旨在向您介绍近地空间环境及其对航天器、通信系统、宇航员等的影响。从事空间技术或应用的航空航天工程师需要对环境有广泛的了解,以便适当地设计他们的航天器。但更一般地说,任何对太空充满热情的人都会对了解太空环境的不同区域、它们如何相互耦合和影响以及它们如何影响我们的日常生活感兴趣。我们将“近地”空间环境定义为受太阳影响的环绕地球的空间区域,也是我们大多数卫星运行的地方。因此,本课程重点介绍环绕地球的空间环境——不要指望了解太阳系、星系、行星际空间等。但是,我们将研究其他行星周围的环境,以便与地球进行比较,例如“近木星”空间环境。近地空间环境从地球表面一直延伸到弓形激波,弓形激波是磁层的外边界。在这个环境中,有不同的重叠区域:由中性分子和原子组成的大气层;电离层,大气中的气体被电离;等离子层,气体完全电离并被困在地球磁场中;以及辐射带,其中包含高能电子和质子。这些区域受到地球磁场的影响,而该磁场占主导地位的区域称为磁层。磁层内有不同种类的粒子、不同的电流以及各种复杂的等离子体和电磁波。此外,环境中还包含我们太阳系中的尘埃和流星体,以及我们直接负责的航天器和轨道碎片。在本课程中,我们将了解每个区域、它们存在的原因以及它们对航天器、宇航员和社会各个方面产生的积极和消极影响。它们对航天器和宇航员有电和辐射影响;对 GPS 和其他航天器的通信信号有影响;磁场扰动对地面有影响;尘埃和流星体对航天器有影响;等等。本课程分为多个模块,涵盖太空环境的每个区域,每个模块大约持续两周。在每个模块中,将阅读指定
上下文。大多数观察到的系外行星的平衡温度高(T EQ> 500 K)。了解其大气的化学和解释其观察结果需要使用包括光化学在内的化学动力学模型。这些模型中使用的真空紫外线(VUV)吸收横截面的热依赖性在高温下是鲜为人知的,从而导致不确定性在产生的丰度谱。目标。我们工作的目的是通过实验研究外部大气的VUV吸收横截面的热依赖性,并提供准确的数据以在大气模型中使用。这项研究的重点是乙炔(C 2 H 2)。方法。我们使用VUV光谱和同步辐射测量了七个温度下的C 2 H 2的吸收横截面,在115-230 nm光谱结构域中记录的296至773 K。这些数据在我们的一维热化学模型中使用,以评估它们对通用热木星样系外行星气氛的预测组成的影响。结果。C 2 H 2的绝对吸收横截面随温度而增加。这种增长从115 nm相对恒定,并从185 nm急剧上升到230 nm。这种变化还影响了其他副产品(例如甲烷(CH 4)和乙烯(C 2 H 4)的丰富曲线。结论。我们介绍了在高温下C 2 H 2的VUV吸收横截面的第一个实验测量。使用该模型计算的C 2 H 2的丰度曲线显示出略有变化,当使用C 2 H 2吸收横截面与296 K相比,在773 K时测量的5×10-5 bar接近40%,与296 K相比。这是由1530 nM的吸收率较高的230 nM,该吸收率在296 K中。光谱范围。需要对其他主要物种进行类似的研究,以提高我们对系外行星气氛的理解。
项目描述:形成行星的光盘,气体和尘埃旋转的年轻恒星的光盘是行星的出生地。由于其能够解决这些物体中的小细节的能力,Atacama大毫米/亚毫米/亚毫米(Alma)彻底改变了我们对行星形成的理解,表明大多数构成星球的碟片都显示出“间隙和戒指”的序列,因此被认为是由于年轻星球和他们形成的圆盘的持续相互作用(图。1a)。但是,直接证据证明存在嵌入行星的存在仅在一个圆盘中可用,PDS 70(图1b和1c),在其中检测到了两个类似木星的年轻行星。普遍认为,PDS 70的独特性位于其大腔中(参见图1a和1c),几乎完全没有灰尘和气体,因此非常适合搜索与背景光盘一号区分开的行星发射。该项目的目的是搜索PDS 70个类似物,建立具有宽阔和深腔的行星形成光盘的完整普查,作为确定可能的行星托管圆盘的第一步。这将通过将光学计算到可用于附近恒星形成区域的数百个来源的MM光度法结合来完成。如果时间允许,通过搜索Alma档案,学生将使用这些光盘的亚MM图像(如果有)进行补充,并确定最佳的行星托管候选人。学生将学会搜索多波长的光度计目录,并将它们组合起来以识别盘状恒星和在这些来源中存在腔。如果时间允许,他们还将学习如何从这些观察值中搜索ALMA存档和重建图像(例如图1A,1C)中的数据。主要工具将是开源软件,用于搜索和交叉匹配在线目录(例如TopCat)和图像ALMA数据(CASA)。
1.1。概述。定向聚合物模型描述了无序培养基中的随机路径。该模型最近引起了人们的极大兴趣,因为它被认为是在KPZ(Kardar-Parisi-Zhang)普遍性中。在所谓的强障碍状态中,尤其是在空间维度d = 1中,预计聚合物具有超排除的缩放指数,因此其行为与其无限温度版本完全不同(通常的简单随机步行)。目前,仅在少数可解决的模型中进行了验证。与一维情况相反,在空间维度d≥3中,众所周知,简单随机行走的扩散尺度持续到某些反度βCR> 0。此参数制度被称为弱混乱阶段,它是当前文章的重点。它的特征是一组β,因此(归一化的)分区函数WβN会收敛到正时wβ∞。与强障碍阶段相比,弱混乱阶段的长期行为要比[14、2、21]的理解要好得多,但仍然存在许多重要的问题。我们对β接近βCR的情况特别感兴趣,这是一个有趣的制度,因为强大的障碍超出了βCR(最近证明βCR本身属于弱疾病阶段[32])。本文的贡献是引入一种基于L p估计的方法,该方法有效,该方法超过βl 2 Cr,并且对于某些类别的环境,最多可达βCR。更准确地说,可以写然而,从技术上讲,这种制度在技术上很困难,因为一种成功的方法可以追溯到[14],并且基于L 2-木星技术,并不适用于全部弱疾病状态,而仅适用于某些βL 2 Cr,这是严格小于βCR的βL 2 Cr。我们的主要结果是在时空点(0、0)和(n,x)之间的点对点分区Wβ,0,x 0,n的束缚,在n∈N中均匀地均匀,在大的x范围内,尤其暗示着对聚合物度量的局部限制定理。非正式地,后者的结果表明,聚合物测量的密度µβΩ,n(聚合物的淬灭定律直到时间n)与简单随机行走的密度相当,具有良好行为的随机乘法常数。
美国宇航局的连续失败不容忽视。航天飞机发射的巨额开支使美国宇航局在国际市场上失去了竞争力,无法发射用于研究天气、国际通信系统或全球表面测绘等实用卫星。在航天飞机计划开始时,美国宇航局宣布,这笔巨额投资将很快得到回报,因为它将使太空发射比一次性助推器便宜得多。但 20 年后的今天,事实却截然相反:将每磅重物发射到近地轨道的成本比其他几个国家同时开发的无人一次性助推器高出许多倍。此外,灾难和险些发生的灾难清楚地表明,航天飞机不是一种安全的发射系统。除此之外,我们还目睹了一系列大规模的失败。哈勃太空望远镜耗资 20 亿美元,但其设计缺陷十分严重,在发射前,只需花费很少的额外费用,用相当简单、高精度的测量仪器就能发现。最近的修复任务能否成功还有待观察。但修复成本(6.3 亿至 12 亿美元)必定会降低人们对修复的热情,因为修复最多不能使仪器达到最初预期的性能。需要修复的独立严重故障数量之多,无法做出良好的预测。伽利略号探测木星及其卫星的任务耗资超过 10 亿美元,可能仍会取得一些成果,但展开航天器天线时发生的机械故障将阻止其将所有结果发回地球。现在,在一系列耗资巨大的航天飞机发射失败之后,另一个耗资近 10 亿美元的重大项目——火星轨道器,也莫名其妙地失败了。同样,一颗地球测绘卫星(Landsat 系列的延续)现在正无用地漂浮在某个未知的地球轨道上。考虑到巨大的成本,一个经过精心规划的项目会遭遇如此接二连三的失败吗?20 世纪 70 年代初,人们非常仔细、详细地讨论了规划太空研究项目的问题。一些外部顾问委员会(一些由 NASA 设立,一些由白宫科技办公室设立)提出了许多详细的建议,这些建议包括:
“电信:为什么我在电话里听起来不一样?” 适合 S1-S6 的 Keith Brown 博士 电信涵盖了广泛的活动,包括:无线电、电视、电话和数据通信。不同形式的通信技术以不同的方式改变正在通信的内容。通过演示,本演讲探讨了通信系统中的一些影响因素,以及根据所使用的通信系统,声音可能会有所不同。 “ 微型机器的奇妙世界 ” 适合 S1-S6 Marc Desmulliez 教授 / Jose Marques-Hueso 博士 从 1966 年拍摄的电影“神奇旅程”到视频游戏机和手机传感器的最新进展,微型机器让科学界和公众都为之着迷。本次演讲将介绍微型机器带来的挑战和机遇,从微电子到微型医疗设备。 “ 自然启发工程:旧教训,新起点 ” 适合 S1-S4 Marc Desmulliez 教授 / Elisa Ramil Brick 女士 / Marti Verdaguer 先生 在过去的 38 亿年里,大自然为动植物的生存和繁荣提供了解决方案。人类可以从大自然中获得启发,解决原材料稀缺、气候变化、水污染和可持续性等问题。本次演讲将通过示例解释为什么大自然如此巧妙地使事物更便宜、能耗更低、可持续。讲座还将介绍工程师如何将大自然的工程原理转化为造福人类的人造产品。 “未来的太空征服者将不是人类” 适合 S1-S4 Matt Dunnigan 博士 随着我们探索太阳系外围及更远的地方,当前和未来的太空探索将越来越依赖于机器人太空探测器和着陆器的使用。本次演讲将使用国际空间站、火星着陆器等例子来描述机器人在太空中的应用,以及计划使用机器人登陆彗星和探索木星和土星的冰冻世界。 “有用的机器人” 适合 S3-S6 Mauro Dragone 博士 / Suphi Erden 博士 / Scott MacLeod 先生 / Alexandre Colle 先生 正在开发机器人来帮助长期残疾和患有痴呆症等疾病的人,并协助我们医院的外科医生和医疗保健专业人员的工作。本次演讲将介绍所有这些应用如何利用机器人技术、人工智能和物联网领域的最新进展,以及它们如何在工程师与计算机科学家、健康专家、心理学家以及有辅助生活需求的人的共同努力下得以实现。
摘要。本文涉及许多高级空间预测,重点是大量卫星在我们的星球上移动在低地轨道上,并探讨了如何组织它们以解决重要的世界问题,尤其是有关全球安全和防御问题的问题。这项工作分析了使用已开发的空间捕获技术(TPZ)的方法,该技术已经在许多用于建模和管理卫星系统的应用任务上进行了成功测试。对这个方向的特别兴趣是太空发展机构“下一代的太空架构”的最后一个项目,其中计划在不同层面上使用大量相互关联和有组织的卫星。该计划比1980年代提出的广为人知的“战略防御计划”要进步得多。tpz基于移动递归场景,该场景熟悉一种特殊的高级空间捕获语言(MPZ),该语言能够自行分布式环境并形成可以解决任何分布式问题的强大空间基础架构。本文列出了最新版本的TPZ的详细信息,解决方案的示例借助了问题,例如分布式跟踪以及随后的消除基础设施。摘要。还展示了如何通过安装特殊的虚拟级别,建立卫星组可以大大简化识别和解决陆地和太空环境中许多问题的过程,并通过复杂的国家国际业务和宇宙来降级。关键字:战略防御性计划,出色的鹅卵石卫星,下一代空间体系结构,超音速刨床,安全性,虚拟级别,虚拟级别,空间迷恋,移动迷恋。该论文审查了以低地球轨道在全球范围内移动的许多卫星上的各个空间项目,并调查了托林的方式。世界问题,尤其是与全球安全和国防有关的问题。它分析了在Numeros应用程序上成功测试的开发空间抓握模型和技术(SGT)的应用,以模拟和管理多个。特别感兴趣的是最新的太空发展机构的下一代太空架构,它使用了大量在不同的木星比八十年代已知的战略防御计划项目。sgt以一种特殊的高级空间掌握语言(SGL)的方式在移动递归方案中低调,该语言可以自动宣传和自匹配分布式环境。强大的空间基础架构能够解决任何分布式概率-LMS。提供了最新SGT版本的基础知识,该论文描述了解决方案的示例,例如分布式跟踪和消除复杂移动的巡航导弹和高超音速GLIDERS,组织有效的监护层的组织,这些层将能够观察到地球上的局部危险范围,还可以观察到任何分布式的Terrestrestial terrestrestial Instrestrial Infrrastructer。它还显示了如何插入卫星星座的较高虚拟层,这可以简化
首先是海军陆战队少将,然后作为NASA管理员,小查尔斯·博尔登(Charles F. Bolden Jr.2009年,巴拉克·奥巴马(Barack Obama)总统任命博尔登(Bolden)为第十二名NASA管理员,这使他只是第二次担任该职位的宇航员。领导NASA时,Bolden负责从航天飞机系统到新的勘探时代的过渡,完全专注于国际空间站(ISS)和航空技术开发。Bolden领导了太空发射系统和Orion Crew Capsule的开发。Bolden还监督了向商业空间倡议的转变,以处理ISS的补给。他创建了NASA的太空技术任务局,负责开发将使未来探索任务成功的技术。Bolden的任期包括火星好奇的漫游者登陆的胜利,这是Juno任务的成功,该任务有助于我们更完全了解地球木星,增加了负责地球观测任务的卫星数量,并持续进展,朝着预期的2021年詹姆斯·韦伯(James Webb)空间的预期推出。不要忘记NASA中的第一个“ A”代表航空公司,Bolden还将注意力集中在NASA的航空计划上,以及该机构开发可以比以往更快,更远,更安静和更绿色的飞机开发飞机的目标。在他是NASA宇航员的职业生涯中,Bolden乘坐四个航天飞机任务飞行,在太空中登录了680个小时。1986年,他驾驶的航天飞机哥伦比亚(STS-61C)和1990年的航天飞机发现(STS-31) - 部署了哈勃太空望远镜的任务。他还曾在1992年在Atlantis航天飞机上担任任务指挥官(STS-45),并于1994年(STS-60)担任航天飞机发现。Bolden在1986年的航天飞机挑战者灾难之后,还曾在约翰逊航天中心担任NASA安全部门。Bolden也有漫长而杰出的军事生涯。美国的毕业生海军学院,鲍尔登在越南战争期间飞行了100多次战斗任务。后来他是海军航空测试中心系统工程和罢工飞机测试局的测试飞行员。在1994年完成了宇航员的服务后,他曾在海军学院担任中级船员的助理指挥官,并在1998年担任科威特(Kuwait)沙漠雷霆行动的海洋远征军指挥官。他上次担任加利福尼亚州海军陆战队Miramar海军陆战队航空公司第三海军飞机翼的总指挥官,然后他从海军陆战队退休。Bolden拥有南加州大学系统管理科学硕士学位。他的过去荣誉包括国防杰出的服务奖章,国防上级服务奖章,杰出的飞行十字架,空中奖章,三个NASA