木质素是产生生物质芳香族化合物的最有前途的候选者。然而,挑战在于在轻度条件下木质素单体之间的C键裂解,因为这些键具有高解离能。电化学氧化允许轻度切割C -C键,被认为是一种有吸引力的解决方案。为了在木质素的价值中实现低能消耗,使用高效的电催化剂是必不可少的。在这项研究中,开发了一种精心设计的催化剂,该催化剂由掺杂二氧化镍(Oxy)氢氧化物的钼二硫化物异质结的精心化催化剂。在高价状态下钼的存在促进了丁基氢过氧化物的吸附,从而导致临界自由基中间体的形成。此外,掺杂掺杂的掺杂掺入镍的电子结构,从而导致较低的能屏障。结果,异质结催化剂在木质素模型化合物中裂解Cα -Cβ键的选择性为85.36%,在环境条件下达到了93.69%的底物转换。此外,电催化剂解聚了有机溶质木质素(OL)的49.82 wt%的可溶性级分,导致高达13 wt%的芳族单体的产率。很明显,还使用工业牛皮纸木质素(KL)证明了制备的电催化剂的有效性。因此,这项研究提供了一种实施木质素精炼中电催化氧化的实用方法。
我们查阅了全球可用的木质生物质来源的文献,以确定其是否适合作为新西兰国内生物能源战略的一部分。这些信息说明了全球大规模利用的三种主要木质生物质能源流:现有人工林和木材加工流的残余木质生物质;短轮伐期矮林和短轮伐期林业。国际上优先考虑的每种生物质流的树种由各个森林制度本身决定。就残余木质生物质而言,这些树种是人工林的典型外来或本土针叶树种,如锡特卡云杉、花旗松、松树和桉树。短轮伐期矮林利用适合矮林的树种,如柳树、杨树和刺槐。短轮伐期林业迄今为止仅在热带国家以工业化规模建立,利用了生长速度快、适应热带气候的桉树树种。目前全球范围内尚无已知的政府所有的生物质专用林。
这项研究评估了利用酿酒剂的木质纤维素水解物(BSG)作为氨基酸(AA)生产的木质纤维素水解物的潜力。主要目标是使用选定的微生物探索BSG水解产物的AA产生。最初,筛选了不同的微生物在BSG水解物上的生长,并通过奶昔和生物反应剂中的培养进一步研究了选定的微生物,以进一步研究AA的生产。从这种筛查中,选择了酿酒酵母和谷氨酸杆菌。C.谷氨酰胺在奶昔和生物反应器中产生丙氨酸,脯氨酸,缬氨酸和甘氨酸。在30小时后在奶昔中发现了最高的丙氨酸产生(193.6±0.09 mg/L),而生产脯氨酸(22.5±1.03 mg/l),Valine(34.8±0.11 mg/L)和甘氨酸和甘氨酸(34.8±0.11 mg/L)和甘氨酸(18.7±1.30 mg/l)(18.7±1.30 mg/l)在Bioreactor中和val(gly)和val(gly)(gly)(gly)(gly)(gly)(gly)(gly)(gly)(gly)(gly)(gly)(gly)(gly)(gly)(8小时)。为了增强谷氨酸梭菌的AA产生,进行了饲喂批处理发酵实验。除甘氨酸外,在饲料批次阶段没有产生AA。S。酿酒酵母在奶昔烧瓶中产生丙氨酸,脯氨酸,缬氨酸和谷氨酸,而在生物反应器中则不会产生。在50小时产生50 h,而在60 h 60小时后,获得了50 h,而产生谷氨酸(66.2±0.49 mg/l),而谷氨酸产生(66.2±0.49 mg/l),获得了最高生产(11.8±1.25 mg/l),脯氨酸(11.8±1.06 mg/L)和Valine(4.94±1.01 mg/L)。这项研究的恶魔通过淹没发酵促进了BSG的几个AA的产生。但是,需要进一步优化以提高生产率。
Bhavini Patel 是牛津大学化学专业硕士研究生最后一年的学生。她对功能化材料为可持续未来铺平道路的潜力非常感兴趣。Bhavini 专注于化学和环保意识的交汇,她很高兴能为绿色世界的旅程带来重大影响。
生成生物燃料。但是,由于木质纤维素生物量的缓慢降解,生物转化过程的效率并不总是令人满意的。一种有趣的方法是使用具有高木质纤维素降解能力的微生物群落来进行环保预处理。这项研究的重点是表征细菌,真菌和酵母菌菌株的降解性能,并设计和构建不同的微生物财团,用于固态治疗小麦麸皮和小麦稻草。微生物群体,即BFY4和BFY5,含有不同的细菌,真菌和酵母,导致糖积累的比率高于3.21到3.5,降解率超过33%的糖含量超过了33%,因此在整个过程中降低了较高的水解酶活性和改善的降低糖产量。在72 h后,在由BFY4和BFY5预处理的小麦稻草预处理中也检测到最高的FPase(0.213 IU/GDS)和木聚糖酶(7.588 IU/GDS)活性,而CMCASE活动峰值(0.928 IU/GES)(0.928 IU/GDS)(0.928 iu/g.ds)时使用了小麦麸皮。当两种底物以相同比率使用时,在处理过程中释放的葡萄糖量增加。我们的结果表明,底物组成在混合培养物的降解能力中也起着重要作用。这些发现可能有助于促进在试点量表上应用此类生物过程所需的主要知识。。
https://doi.org/10.26434/chemrxiv-2023-klv3z orcid:https://orcid.org/000000-0002-2637-9974 content contem content content content notect content contem consemrxiv note contem-chemrxiv consemrxiv note content consemrxiv note content。许可证:CC BY-NC-ND 4.0
锂离子电池属于金属电池(MIBS)类别,它们在智能存储设备中经历了广泛的开发。1这些电池的性能和实际应用通常取决于所使用的金属离子的特性(表1)。为例,钠是通过单电子转移(如锂)运行的,并且具有低电化学电位(-2.71 V与标准氢电极,SHE),该电位仅比锂的氢电极,SHE)。但是,鉴于与锂相比,钠的丰度和较低的成本较低,基于钠的可充电电池可以更好地满足对大型电气储能系统的需求。4此外,与LIB相比,使用多价离子(例如Zn 2+,Mg 2+,Al 3+)的电池可以实现更高的体积能力和较低的成本,因为它们能够参与多个电子转移氧化还原反应和较高的丰度。1,5
西班牙的林地和树木作物分别占该国国土面积的近 40% 和 10%,因此,利用固体生物质生产能源具有巨大的增长潜力。该国拥有 1900 万公顷林地。除了从森林中提取的残留生物质外,其他设施还使用农业食品工业废料和作物残渣作为原料(橄榄仁、树坚果壳)。修剪树木作物的残留物可以用作固体生物质。用于生产橄榄油的橄榄树固体残留物,如橄榄核和干饼,越来越多地用于可再生供热目的。西班牙的树木作物正处于扩张期,目前覆盖面积刚好超过 500 万公顷,其中一半是橄榄树林。
使用木质生物质来产生热量、冷却、电力、生物燃料和化学品是一项重要的发展,它支持社会向减少对传统采掘能源资源的依赖的转变,同时增加我们对可再生能源的使用,以减少温室气体排放和其他空气污染物。此外,生物质的使用将支持对林业废弃物木质生物质的需求,这对于可持续森林管理至关重要,特别是在该国那些无法将多余的林业材料留在现场的地区。我们预计木质生物质气化可能在满足这些日益增长的社会需求方面发挥重要作用,提供一种高效、低排放的方法,从林业工业木材采伐和加工产生的废物中获取大量未充分利用的可用能源。
近年来,木质复合材料凭借其可持续性及固有的层状多孔结构,在电磁干扰(EMI)屏蔽领域受到了广泛关注。木材的通道结构常用于负载高导电材料以提高木质复合材料的EMI屏蔽性能,但如何利用纯木材制备超薄EMI屏蔽材料的研究很少。本文首先通过平行于年轮切割木材得到超薄单板,然后通过简单的两步压制和碳化制备碳化木膜(CWF)。超薄厚度(140 μ m)、高电导率(58 S cm − 1 )的CWF-1200的比EMI屏蔽效能(SSE/t)可达9861.41 dB cm 2 g − 1,远高于已报道的其他木质材料。此外,在CWF表面原位生长沸石咪唑酯骨架-8(ZIF-8)纳米晶体,得到CWF/ZIF-8。CWF/ZIF-8表现出高达46 dB的EMI屏蔽效能(SE),在X波段表现出11 330.04 dB cm 2 g − 1的超高SSE/t值。此外,超薄CWF还表现出优异的焦耳加热效应。因此,超薄木基薄膜的开发为木质生物质取代传统的不可再生且昂贵的电磁(EM)屏蔽材料提供了研究基础。