摘要。本研究旨在确定使用 Paraloid B 72 对生物侵蚀木材进行固结处理的效果。确定 HM 硬度的方法是一种原创的科学方法,它是一种微创方法,可以指示固结处理前和固结结束时基材的损坏程度,从而可以评估该过程。使用 Mark 10 仪器测试样品以确定 HM 硬度,该硬度可与标准硬度相关联。在 Paraloid B72 中执行两个固结步骤,12% 溶解在混合物(乙酸乙酯和甲苯,1:1)中。在固结结束时,硬度从 6.74 N/mm 2(37.11%)增加到 13.73 N/mm 2(75.61%),而参考木材的硬度为 18.16 N/mm 2 。
木质素是一种生物质衍生的有机聚合物,也是造纸工业的主要材料,是一种羰基化合物,具有奎因酮功能,仅通过提供合适的电荷密度来实现廉价和丰富的材料来存储便宜而丰富的材料。9它具有多功能的化学结构和官能团,它们可以朝着适合应用的晚期分子定制修饰。木质素已被用作工业水平生产过程中的廉价碳源。这篇评论的主要目的是强调在可访问的可用锂电池系统中使用木质素作为即兴电池材料。然而,很少有评论解释了木质纤维素生物量作为不同eess中的活性成分的应用。 10 - 15但是,我们的重点主要是与木质素在基于LI的系统中作为活性电极(阴极/阳极),粘合剂,电解质和主要碳源的电化学性能有关的最新进展。这篇评论主要将木质素作为替代品,以替代众所周知的经常使用昂贵且苛刻的电池材料。这是木质素在其功能方面的作用的细致跟进,表明对生物量衍生的木质素生物聚合物的兴趣不断发展。
木质素磺酸盐-赖氨酸水凝胶用于吸附重金属离子。《农业与食品化学杂志》,2020 年,68(10),3050-3060。[30] Orszulik S T。石油工业中的环境技术。荷兰:Springer,2008 年。[31] Klapiszewski Ł、Zietek J、Ciesielczyk F、Siiwnska- Stefanska K、Jesionowski T。与木质素磺酸钙结合的硅酸镁:原位合成和综合物理化学评价。矿物加工的物理化学问题,2018 年,54,793-802 [32] Parsetyo EN、Kudanga T、Østergaard L、Rencoret J、
摘要:由对分裂蛋白的脱氢聚合物(DHP)组成的亚级球形微颗粒的一锅和一步酶促合成作为典型的木质素前体,并研究了Tempo氧化的纤维素纳米纤维(TOCNF)。辣根过氧化物酶酶上催化Coniferyl醇在TOCNF的水性悬浮液中的根本耦合,从而形成了球形微颗粒,分别具有直径和球形指数,分别为大约0.8 µm和0.95。TOCNF官能化DHP微球的电势约为-40 mV,表明胶体系统具有良好的稳定性。纳米纤维成分,而通过共聚焦激光扫描显微镜和calco calco流射白色构造,将某些TOCNF固定在微粒内部。作为纤维素和木质素都是天然聚合物,即使在海洋中,这些木质TOCNF-DHP微粒纳米复合材料也有望成为化妆品化妆品中化石衍生的微型头的有希望的替代品。
另一方面,随着世界各地大型发电厂越来越多地使用木质颗粒作为煤炭的替代品,人们对其可持续性和温室气体减排效益的怀疑和批评也越来越多 6 。背景是,英国、荷兰和丹麦等森林资源不丰富的欧洲国家对木质颗粒的进口量一直在增加。如上所述,颗粒产量最近确实在增加,但 3700 万吨木质生物质颗粒相当于 0.66 EJ,仅占生物能源总供应量的 1.1% 7 。此外,仅为能源用途而砍伐森林的情况很少见,实际上,大多数采伐和间伐都是为了建筑材料和公共功能,以维护水资源和生物多样性 8 。
摘要:接触电气(CE)或接触和分离后的表面电荷的发展,是一个千年历史的科学谜团,是该行业许多问题的根源。自18世纪以来,了解CE的效果涉及根据其充电倾向对材料进行排名。在所有这些报告中,绝缘子伍德对CE的影响令人惊讶。在这里,我们表明,木材的这种独特的抗抗性性质归因于其木质素含量,即从木材中去除木质素,使抗固定特性不再存在,并且(重新)加法将其带回去。提议木质素的抗抗性作用(也是绝缘子)与其根本的清除作用有关,并且可以通过CE的键键机制来解释。我们的结果还表明,木质素是一种可持续的,低成本的生物聚合物,可以用作弹性体和热塑料的一些代表性实例,以表明其抗抗性作用的普遍性质。
将木质纤维素底物微生物转化为燃料和平台化学中间体为建立可行的生物经济提供了一条可持续的途径。然而,这种方法面临着一系列关键的技术、经济和可持续性障碍,包括:底物利用不充分、木质纤维素水解产物和/或最终产品毒性、产品回收效率低下、培养要求不兼容以及生产率指标不足。开发具有适合在工艺相关条件下高产率转化木质纤维素底物天然特性的生产宿主,提供了一种绕过上述障碍并加速微生物生物催化剂部署开发的方法。酪丁酸梭菌是一种天然的短链脂肪酸生产菌,它表现出一系列特性,使其成为转化木质纤维素底物的理想候选菌,因此是微生物生产各种羧酸衍生产品套件的有希望的宿主。本文回顾了该细菌作为工业微生物细胞工厂的开发的最新进展和未来方向,重点是利用木质纤维素底物和代谢工程方法。
摘要。2016年,欧盟的固体生物量发电量增加了0.7 mtoe,比2015年增加到10.3 mTOE(119.78 TWH),增长率为7.6%。固体生物量可用于以下:i)加热和冷却和热水用于国内用途,ii)用于工业过程的供暖,iii)发电。与其他可再生能源(RES)不同,例如风能和太阳能光伏(间歇性能源),固体生物质发电厂在需要时提供可调度的能源。因此,供应的安全性也可以提高。此外,使用固体生物量具有显着优势,例如创建与发电厂相关的工作和用于产生能量的原料的收集。在本文中,伊比利亚电力系统对森林生物量发电厂进行了经济评估。根据当前的西班牙电气监管,其中三个经济参数被视为收入(日用市场,运营和投资),为监管使用寿命(25年)开发了一种经济模型。估计生物量发电厂的投资成本已估计为15、30和50 MWE。。在所有情况下都获得了净现值(NPV),内部收益率(IRR)和投资回收期。获得的结果表明,使用446.43 kt年-1的湿生物质的生物质发电厂可能会产生337.5 GWH年-1的净电能-1。考虑到145€MWH -1的电能价格和0.0178€kWh -1的木质生物量,NPV和IRR分别达到165.6 m€和17.63%。
来自化石燃料的温室气体排放是世界温室气体总量的重要组成部分。4,5如果各国政府不进一步努力减少温室气体排放,预计到 2050 年温室气体排放量将上升 52%。4,6预计到 2100 年底地球平均地表温度将上升约 1.1°C 至 6.4°C,对环境和生态系统造成不可逆转的影响,并严重损害人类健康。4全球三分之一的温室气体排放和 40% 的能源消耗来自建筑行业。因此,建筑物在室内环境中使用大量能源用于日光照明、制冷和供暖。7-9 2018 年 11 月,欧盟委员会已承诺将温室气体排放量减少至少 40% 至 1990 年的水平,同时提高能源效率 32.5%,并将可再生能源增加到 32%。 10,11 为了实现这些目标,研究人员、建筑师和建筑工程师致力于减少建筑能耗、碳排放以及使用和储存可再生能源。7,9,12