摘要 — 航空公司安全部门分析机上记录的飞机数据 (FDM) 以检查安全事件。此活动依靠人类专家创建一个基于规则的系统,该系统根据一小组参数是否超过一些预定义的阈值来检测已知的安全问题。但是,罕见事件最难手动检测,因为模式通常无法一目了然。专家一致认为,进近和起飞程序都更容易发生安全事故。在本文中,我们进行了描述性和预测性分析,以检测 LEBL 机场 25R 跑道进近阶段的异常情况。从描述的角度来看,聚类技术有助于在数据中发现模式和相关性,并识别类似观察的聚类。此外,这些聚类可能会将某些点揭示为与其他观察值隔离的罕见事件。可以使用预测分析以及更简洁的深度学习 ANN 和自动编码器来检测这种异常事件。该方法依赖于学习“正常”观察的样子,因为它们通常是大多数情况。之后,如果我们处理异常飞行,由于与训练数据的偏差,模型将返回较高的重建误差。这表明预测方法可以作为安全专家和 FDM 分析师极其有用的取证工具。关键词 — 异常检测、危险识别、安全、聚类、深度学习、LSTM、自动编码器、HDBSCAN
摘要 - 在本文中,我们研究了基于多层结构(ML)的创新卵子阈值开关选择器(OT)。多亏了物理化学分析和电特性,我们显示了如何通过每个单独的层化学计量,厚度和接口的工程来调整MLS的性质和结构。ge/n掺杂的MLS OT,从而揭示了Asepososed材料中存在的结构特征以及接口处的单个层之间的强相互作用。我们证明了通过共扩散技术实现的电气参数的可变性wrt标准OT的可变性,并且MLS OTS的高耐力能力高达2·10 9以上,具有稳定的Na泄漏电流。此外,我们还显示了GE-N键在400℃的OT热稳定性中发挥着重要作用,以及如何在ML OT中更容易调节它们。这些发展为通往新的OTS材料及其工程的道路铺平了道路,从而确保了高温稳定性和对电气表演的最佳调整。
偷渔民鱼线中的鱼饵。另有记载称,库佩出发探索新大陆,也许是因为他观察到了 Pīpīwharauroa(每年飞入海平面的候鸟)或向南迁徙然后返回的鲸鱼。我们还知道,波利尼西亚航海家有办法在广阔的海洋中定位自己。没有 GPS,他们利用星星,寻找某些鱼类和鸟类的存在,观察海浪中的图案和云层的倒影。但是,远离地标和珊瑚礁,没有一种方法可以告诉他们确切的位置。Crowe(2018)讨论了毛利人和他们的波利尼西亚祖先的航海成就。
1仪器科学和光学学院 - 北京信息科学技术大学,北京,中国摘要:一个新颖的机器学习框架 - 经验学习(EL),用于观察新对象和掌握新技能,通常可以应用于探索未知的人工智能机器人(空中)。与传统方法不同,不必在模型培训之前准备大型培训样本。取而代之的是,通过不断观察或刺激研究对象并记录这些经验来建立经验链,这是受早期人类学习行为启发的。通过连续观察和尝试,经验链被更新,并逐渐收敛于研究对象的实际输出概率。当前的经验单元是EL判断的基础,而过去的经验可以使用忘记系数丢弃。使用两个简单示例说明了此框架的应用模式。猫和狗的生成器实验代表了对新物体的自我探索。虚拟篮球机实验展示了这种方法学习新技能并有效减轻随机干扰的能力。比较,分析了所提出的方法与相关算法之间的相似性和差异。最终,这种方法证明在使人工智能系统能够研究和探索未知领土方面有价值。关键字:经验学习,自我 - 探索算法,否 - 先验 - 数据算法,人工智能框架
本本学论文研究了使Ari人形机器人能够使用机器学习和计算机视觉中的基本概念来学习和识别新对象的任务。该研究围绕着开发和实施直接向前的3D对象检测和分类管道,目的是使机器人能够识别以前尚未遇到的对象。该方法整合了开放式识别和增量学习的基本方面,重点是使用ARI机器人在实用环境中应用这些技术。通过一系列元素实验评估了实施系统的有效性,重点关注其检测和分类新的观察的能力。这些初始测试提供了有关系统在受控环境中的基本功能及其潜在效用的见解。本文在介绍性层面上有助于掌握机器人技术,并在实用机器人背景下对机器学习和计算机视觉的使用进行了初步探索。它为在机器人对象识别领域的未来研究奠定了基础。
• 卵圆孔未闭 (PFO) 是心脏上的一个孔洞,出生后从未闭合。约 25% 的成人有卵圆孔未闭。4,5 在胎儿发育期间,这个孔洞允许血液在肺部仍在发育时循环。在出生后几个月内,约 75% 的人口的卵圆孔洞会完全闭合。如果孔洞未闭合,则表明该人患有卵圆孔未闭。对于数百万患有卵圆孔未闭的人中的绝大多数人来说,即使血液从右心房漏到左心房,这也不是问题。但是,当血液中含有血凝块时,就会出现问题,血凝块可能会从心脏流到大脑并导致中风。40% 患有隐源性中风的成人患有卵圆孔未闭。4 根据您的年龄、卵圆孔未闭的严重程度或其他因素,您的医生可能会建议您进行手术来闭合卵圆孔未闭。
_____________________________________________________________________________________________________________________ 信用卡持有人的账单地址(街道、城市、州、邮政编码)(必填)
量子过程层析成像 (QPT) 方法旨在识别(即估计)给定的量子过程。QPT 是一种主要的量子信息处理工具,因为它特别允许人们表征量子门的实际行为,而量子门是量子计算机的基石。然而,通常的 QPT 程序很复杂,因为它们对用作要表征过程的输入的量子态设置了几个约束。在本文中,我们扩展了 QPT 以避免两个这样的约束。一方面,通常的 QPT 方法要求人们知道,因此要非常精确地控制(即准备)用作所考虑量子过程输入的特定量子态,这很麻烦。因此,我们提出了一种盲目或无监督的 QPT 扩展(即 BQPT),这意味着这种方法使用的输入量子态的值是未知的和任意的,只是要求它们满足一些一般的已知属性(并且这种方法利用了所考虑量子过程的输出状态)。另一方面,通常的 QPT 方法要求人们能够准备相同(已知)输入状态的多个副本,这具有限制性。与此相反,我们提出了“单准备 BQPT 方法”(SBQPT),即只能对每个考虑的输入状态的一个实例进行操作的方法。这里通过数值验证的实用(S)BQPT 方法说明了这两个概念,在以下情况下:(i)使用随机纯态作为输入,并且它们所需的属性特别与定义它们的随机变量的统计独立性有关;(ii)所考虑的量子过程基于圆柱对称海森堡自旋耦合。作为基准,我们还引入了专用于所考虑的海森堡过程的非盲 QPT 方法,我们分析了它们的理论行为(这需要本文针对随机输入状态开发的工具),并通过数值测试它们对系统性和非系统性误差的敏感性,这些误差在实践中最有可能出现。这表明,即使对于非常低的准备误差(尤其是系统误差),这些非盲 QPT 方法的性能也远低于我们的 SBQPT 方法。我们的盲目和单一准备 QPT 概念可以扩展到更广泛的过程类别和基于其他量子态属性的 SBQPT 方法,如本文所述。
摘要 - 随着自主系统在我们的社会中变得越来越综合和积分,需要准确建模并安全地控制这些系统的需求已大大增加。在过去的十年中,使用深度学习技术来建模和控制系统很难使用第一原理建模。但是,为此类系统提供安全保证仍然很困难,部分原因是学习模型的不确定性。在这项工作中,我们旨在为不容易从第一原则衍生而来的系统提供安全保证,因此,使用深度学习技巧更加有助于学习。鉴于感兴趣的系统和安全限制系统,我们从数据中学习了系统动态的集合模型。利用集合不确定性作为学习动力学模型中不确定性的量度,我们计算了最大的鲁棒控制不变式集合,从该集合开始,该系统从该集合开始,从而确保系统满足实现模型不确定性的条件下的安全性约束,这些模型不确定性包含在预定的可允许模型集合中。我们证明了使用倒置的模拟案例研究的方法的有效性,并与Turtlebot进行了硬件实验。实验表明,我们的方法可鲁棒化系统对模型不确定性的控制作用,并在不过分限制的情况下产生安全行为。可以在项目网站1上找到代码和随附的视频。
1)Abe F.等。(2019)基因组编辑的三重衰退突变改变了小麦的种子休眠状态。细胞报告28,1362-1369。2)Cong L.等。(2013)使用CRISPR/CAS9系统的多重基因组工程。科学339,819-823。3)Ito Y.等。(2017)RIN突变的重新进化和RIN在诱导番茄成熟诱导中的作用。自然工厂3,866-874。4)Jinek M.等。(2012)适应性细菌免疫中可编程的双RNA引导的DNA核酸内切酶。科学337,816-821。5)Jinek M.等。(2013)人类细胞中的RNA编程基因组编辑。Elife 2,E00471。6)Mali P.等。(2013)通过CAS9通过RNA引导的人类基因组工程。科学339,823-826。7)Yasumoto S.等。(2020)通过农业感染通过短暂的talen表达在四倍体马铃薯中靶向基因组编辑。植物生物技术37,205-211。