21922659,JA,从https://onlinelibrary.wiley.com/doi/10.1002/adhm.202304118下载,由Wiley在线图书馆,wiley在线图书馆[28/02/2024]。 有关使用规则,请参见Wiley Online Library上的条款和条件(https://onlinelibrary.wiley.com/terms-and-conditions); OA文章由适用的Creative Commons许可管辖21922659,JA,从https://onlinelibrary.wiley.com/doi/10.1002/adhm.202304118下载,由Wiley在线图书馆,wiley在线图书馆[28/02/2024]。有关使用规则,请参见Wiley Online Library上的条款和条件(https://onlinelibrary.wiley.com/terms-and-conditions); OA文章由适用的Creative Commons许可
新一代测序 (NGS) 的进步使得人们能够生成人类遗传变异的深度目录,并发现了大量与疾病相关的变异。大多数 NGS 应用都集中在单核苷酸多态性 (SNP) 或短插入和缺失 (indel) 上。串联重复是遗传变异的另一个丰富来源,由于难以获得准确的基因型,因此在很大程度上被忽视了。在这里,我们主要关注重复单元长度为 1-6 bp 的短串联重复 (STR)。总的来说,STR 占人类基因组的约 3%,超过整个蛋白质编码外显子组 [1]。STR 在基因调控区富集 ([2],[3]),重复拷贝数的变化可以通过多种机制影响基因调控,包括修改转录因子结合位点、改变 DNA 甲基化模式 [4] 或其他方式。 STR 中重复单元数量的大幅增加与数十种疾病 [5] 有关,例如亨廷顿氏病 [6] 和脆性 X 综合征 [7],而较温和的逐步变化与包括血液和脂质生物标志物在内的复杂性状有关 ([8], [9])。STR 还被用作癌症研究中诊断的遗传标记,并在多种癌症中发挥作用,包括结直肠癌 [10] 和乳腺癌 [11]。
摘要本文通过小组模型和固定影响模型分析了北京和1个中国省和城市的数字经济数据。这些发现如下:首先,数字参与式融资的发展对中国的征服水平,消费结构,消费领域和发展产生了积极影响,主要是因为它影响了中国公民的消费品。第二,通过分析经济发展不同阶段的数字经济指标和数据,据信,数字经济的规模和覆盖范围将对中国的人均消费产生更大的影响。中国的数字经济主要影响居民的城乡结构,区域结构和消费习惯,以实现数字经济的影响。数字经济对面向增长的家庭消费的影响要大得多,而不是对家庭消费。基于发现,还提供了采取行动的建议。政府应加强数字基础设施,改善数字经济生产力和衍生品金融服务,提高公民资金服务的质量,并提高公民成功发展数字经济的负担能力。
摘要虽然学龄前校长对于整合可持续性很重要,但对此主题的研究很少。使用嵌入式混合方法方法,本研究探索并比较了50个校长的观点和与可持续性有关的观点和行动,该行动与25个未来和25种非核心认证的随机取样的幼儿园(总计290个)的25个市政学前班的随机随机抽样。使用半结构化问卷,从学前班的原理收集数据。整个学校方法花模型被用作分析定性数据的分析框架,而定量数据则受到潜在结构歧视性分析的正交预测。根据参与的校长,经过生态认证的学龄前儿童着重于增加儿童对可持续性的知识和利益,而非证券认证的学龄前儿童着重于发展教师可持续性能力的策略。这与发现生态认证的学龄前儿童在其领导实践中对可持续性更细微和多方面的观点相一致,表明在某种程度上,生态认证在某种程度上起着重要作用。该研究还强调了在学龄前教育中采用整个学校可持续性方法的潜力。交叉验证至少在瑞典背景下支持结论的普遍性。
文章标题:人工智能(AI)在医疗保健中的应用:综述 作者:Mohammed Yousef Shaheen[1] 所属机构:沙特阿拉伯[1] Orcid ids:0000-0002-2993-2632[1] 联系电子邮件:yiroyo1235@tmednews.com 许可信息:本作品已根据知识共享署名许可 http://creativecommons.org/licenses/by/4.0/ 以开放获取的方式发表,允许在任何媒体中不受限制地使用、分发和复制,只要正确引用原始作品即可。使用条款和出版政策可在 https://www.scienceopen.com/ 上找到。预印本声明:本文为预印本,尚未经过同行评审,正在考虑并提交给 ScienceOpen Preprints 进行开放同行评审。DOI:10.14293/S2199-1006.1.SOR-.PPVRY8K.v1 预印本首次在线发布:2021 年 9 月 25 日
摘要 人工智能 (AI) 为各个领域的研究发展开辟了新途径。人工智能技术在不同领域的广泛应用为未来创造了光明的前景。在图书馆领域,人工智能大大提高了信息资源的可用性和利用率,有助于实现图书馆的目标。为了保持相关性,图书馆员必须采用创新思维,因为人工智能现在已应用于图书馆的众多功能中,从组织书籍到促进书籍的传递。人工智能带来了新的可能性,例如整合物理和数字资源以及将视频辅助与物理材料联系起来。这篇评论文章探讨了人工智能 (AI) 在图书馆学中的整合,重点关注通过全面的文献检索发现的应用、工具和挑战。人工智能正在日益改变图书馆的运营,为编目、分类、内容发现和用户交互提供创新的解决方案。这篇评论强调了关键的人工智能驱动工具,例如聊天机器人、推荐系统和自动编目软件,这些工具可以提高图书馆的效率和用户体验。然而,图书馆采用人工智能也带来了重大挑战,包括数据隐私问题、专业培训需求以及工作岗位流失的可能性。本文综合了当前的研究结果,对人工智能在现代图书馆中的作用提供了细致入微的理解,深入了解了人工智能的变革潜力以及充分发挥其优势所必须克服的障碍。
建议的工作流程 建议的工作流程是,该人应该在网站上申请证书,该网站将首先确定是否存在基准残疾。智能助手和视频分析将有助于做出这一决定。将设置一个网络摄像头,其中包含预先指定的问题和预先指定的带有说明的协议。提供用于评估残疾的视频指南和说明手册将有助于以足够的信心得出结论,即患者是否有基准残疾。上诉机构将处理任何上诉。如果它确实符合基准残疾的条件,AI 将填写 WHO 的 ICF 核心集以创建功能档案;使用远程医疗来衡量能力和绩效,这可能取决于环境和社会规范
摘要简介:遗传性载脂蛋白 A-I (AApoAI) 淀粉样变性是一种罕见的异质性疾病,发病年龄和器官受累各不相同。很少有系列文章详细介绍了一系列致病性 APOA1 基因突变的实体器官移植的自然史和结果。方法:我们确定了 1986 年至 2019 年期间在国家淀粉样变性中心 (NAC) 就诊的所有 AApoAI 淀粉样变性患者。结果:总共确定了 57 名患有 14 种不同 APOA1 突变的患者,包括 18 名接受肾移植的患者(5 例肝肾联合 (LKT) 移植和 2 例心肾联合 (HKT) 移植)。发病年龄中位数为 43 岁,从发病到转诊的中位数时间为 3(0 – 31 年)。81%、67% 和 28% 的患者检测到淀粉样蛋白累及肾脏、肝脏和心脏。肾淀粉样变性普遍与最常见的变异 (Gly26Arg, n ¼ 28) 有关。在所有变异中,肾淀粉样变性患者在诊断为 AApoAI 淀粉样变性时肌酐中位数为 159 m mol/L,尿蛋白中位数为 0.3 g/24 h,从诊断到终末期肾病的中位时间为 15.0 (95% CI: 10.0 – 20.0) 年。肾移植后,同种异体移植的中位生存期为 22.0 (13.0 – 31.0) 年。移植后有一例患者早期死亡(肾移植后 2 个月感染相关),未发生导致移植失败的早期排斥反应。在所有四例接受连续 123 I-SAP 闪烁显像的病例中,肝移植均导致淀粉样蛋白消退。结论:AApoAI 淀粉样变性是一种进展缓慢、难以诊断的疾病。移植结果令人鼓舞,移植物存活率极高。
摘要 本文基于2000—2019年中国285个城市的面板数据,从算法、数据、算力、应用场景和相关技术五个维度检索城市人工智能相关专利申请数量,结合产业升级和合理化两个视角,从理论和实证角度分析研究主题的内在影响理论。研究结果表明,人工智能不仅有利于产业升级,而且能显著抑制产业结构偏离均衡,有利于产业合理化。此外,本文结论在经过剔除中心城市样本、缩尾处理、工具变量法等一系列稳健性检验后依然有效。通过异质性检验发现,人工智能对产业升级的促进作用在大城市和产业升级水平高的城市更为明显。内在机理检验结果表明,人工智能通过促进技术创新来推动产业升级。在市场化程度高、互联网发达的城市,人工智能对产业升级的推动作用可以增强,本文的研究结论将有利于加快发展人工智能促进产业升级,为实现高质量发展提供有益参考。
文章标题:抗击 COVID-19:人工智能技术与挑战 作者:Nikhil Patel[1]、Sandeep Trivedi[2]、Jyotir Moy Chatterjee[3] 所属机构:毕业于杜比克大学,联系电子邮件 ID:Patelnikhilr88@gmail.com[1],IEEE 会员,毕业于 Technocrats Institute of Technology,联系电子邮件 ID:sandeep.trived.ieee@gmail.com[2],尼泊尔加德满都佛陀教育基金会[3] Orcid id:0000-0001-6221-3843[1]、0000-0002-1709-247X[2]、0000-0003-2527-916X[3] 联系电子邮件:sandeep.trived.ieee@gmail.com 许可信息:本作品已以开放获取形式发表根据 Creative Commons 署名许可 http://creativecommons.org/licenses/by/4.0/,允许在任何媒体中不受限制地使用、分发和复制,前提是正确引用原始作品。条件、使用条款和出版政策可在 https://www.scienceopen.com/ 找到。预印本声明:本文为预印本,尚未经过同行评审,正在考虑并提交给 ScienceOpen Preprints 进行公开同行评审。DOI:10.14293/S2199-1006.1.SOR-.PPVK63O.v2 预印本首次在线发布:2022 年 7 月 25 日 关键词:COVID-19、SVM、神经网络、NLP、数学建模、高斯模型、疫情防控
