微扰理论广泛应用于各个领域,是一种从相关简单问题的精确解开始,获得复杂问题近似解的强大工具。量子计算的进步,尤其是过去几年的进步,为传统方法的替代提供了机会。在这里,我们提出了一个通用量子电路,用于估计能量和本征态校正,在估计二阶能量校正时,它远远优于经典版本。我们展示了我们的方法应用于双站点扩展 Hubbard 模型。除了基于 qiskit 的数值模拟之外,还介绍了 IBM 量子硬件上的结果。我们的工作提供了一种使用量子设备研究复杂系统的通用方法,无需训练或优化过程即可获得微扰项,可以推广到化学和物理学中的其他汉密尔顿系统。
摘要。轨道制造受到空间微重力,高真空,较大温度变化,强辐射和其他环境因素的影响,这也为适合在轨道上制造的材料和过程方法提出了新的要求。本文总结了不同学者对轨道制造的材料和技术的当前研究状态。分析了机上制造的主要应用方案和要求。分析了不同应用要求下的技术能力要求。然后根据材料来源,材料的使用和制造性,建立了轨内生产的材料系统。根据不同的技术要求,建立了机上制造的制造技术系统。从材料和技术的角度来看,提出了在轨道上制造中应破坏的关键技术方向。它可以为随后的有关轨道制造的材料和过程技术的研究提供参考。
摘要。量子计算为模拟多体核系统开辟了新的可能性。随着多体系统中粒子数量的增加,相关汉密尔顿量的空间大小呈指数增长。在使用传统计算方法对大型系统进行计算时,这带来了挑战。通过使用量子计算机,人们可能能够克服这一困难,这要归功于量子计算机的希尔伯特空间随着量子比特数的增加而呈指数增长。我们的目标是开发能够重现和预测核结构(如能级方案和能级密度)的量子计算算法。作为汉密尔顿量的示例,我们使用 Lipkin-Meshkov-Glick 模型。我们对汉密尔顿量进行了有效的编码,并将其应用到多量子比特系统上,并开发了一种算法,允许使用变分算法确定原子核的全激发光谱,该算法能够在当今量子比特数有限的量子计算机上实现。我们的算法使用哈密顿量的方差 DH 2 E −⟨ H ⟩ 2 作为广泛使用的变分量子特征值求解器 (VQE) 的成本函数。在这项工作中,我们提出了一种基于方差的方法,使用量子计算机和简化量子比特编码方法查找小核系统的激发态光谱。
我们研究了 Trotter-Suzuki 分解的变体,其中哈密顿指数由两个量子比特算子指数的有序乘积近似,使得 Trotter 步长在少数项中得到增强。这种分解直接反映了分布式量子计算机的硬件约束,其中单片量子设备上的操作与使用互连在不同节点之间进行纠缠分布相比更快。我们模拟了横向场 Ising 和 XY 自旋链模型的非平衡动力学,并研究了与量子互连越来越稀疏的使用相关的局部增加的 Trotter 步长的影响。我们发现近似的整体质量平稳地取决于局部稀疏性,并且局部误差的扩散很慢。因此,我们表明,即使在使用互连成本高昂的分布式量子计算机上,也可以利用单片设备上的快速局部操作来获得整体改进的结果保真度。
量子算法 2,14 – 16 可用于求解薛定谔方程,其资源成本随量子比特数呈多项式增长。不幸的是,目前可用的嘈杂中尺度量子 (NISQ) 硬件 17 存在相对较差的门保真度和较低的量子比特数,18 这带来了两个关键挑战。首先,对于 NISQ 定制的量子算法 19 来说,最小化量子资源非常重要。最突出的 NISQ 方法是混合量子经典算法,如变分量子特征求解器 (VQE)、20,21 量子 Krylov 方法、18,22 – 26
International Journal of Exercise Science 13(7): 410-426, 2020. 数以百万计的人使用可穿戴技术设备来记录日常步数,以促进健康的生活方式。然而,许多此类设备的准确性尚未确定。目的是确定 Samsung Gear 2、FitBit Surge、Polar A360、Garmin Vivosmart HR+ 和 Leaf Health Tracker 在自由运动和跑步机条件下步行和慢跑时的信度和效度。40 名志愿者完成了 5 分钟间隔的步行和慢跑自由运动和跑步机方案。这些设备以随机配置同时佩戴。两个手动步数计数器的平均值被用作标准测量。重测信度通过组内相关系数 (ICC) 确定。有效性通过结合 Pearson 相关系数、平均绝对百分比误差(MAPE:自由运动 ≤ 10.0%,跑步机 ≤ 5.00%)和 Bland-Altman 分析(设备偏差和一致性限度)来确定。显著性设置为 p < 0.05。Samsung Gear 2 被认为在慢跑条件下既可靠又有效,但在步行条件下则不然。Fitbit Surge 在除跑步机步行(被认为是可靠的,ICC = 0.76;但无效)之外的所有条件下都可靠且有效。Polar A360 在一种条件下(跑步机慢跑 ICC = 0.78)被发现是可靠的,但在任何条件下都无效。Garmin Vivosmart HR+ 和 Leaf Health Tracker 被发现既可靠又有效
摘要 我们在此讨论在量子计算机上处理量子多体问题时与其对称性相关的一些方面。回顾了与对称性守恒、对称性破缺和可能的对称性恢复有关的几个特点。在简要讨论了一些与多粒子系统相关的标准对称性之后,我们讨论了在量子分析中直接编码某些对称性的优势,特别是为了减少量子寄存器大小。然而众所周知,当自发对称性破缺发生时,使用对称性破缺状态也可以成为一种独特的方式来纳入特定的内部相关性。这些方面是在量子计算的背景下讨论的。然而,只有当最初破缺的对称性得到适当恢复时,才能精确描述量子系统。介绍了几种在量子计算机上执行对称性恢复的方法,例如,通过 Grover 算法净化状态、结合使用 Hadamard 测试和 oracle 概念、通过量子相位估计和一组迭代独立的 Hadamard 测试进行对称性过滤。
为了估计嘈杂的中尺度量子 (NISQ) 时代设备上的分子基态特性,基于变分量子特征求解器 (VQE) 的算法因其相对较低的电路深度和对噪声的抵抗力而广受欢迎。9,10 这导致了一系列成功的演示,涉及在当今的量子设备和模拟器上计算小分子的分子基态能量。4,6,11 – 22 然而,仅仅估计分子基态能量不足以描述许多涉及某种形式的电子激发的有趣化学过程。23 例如,准确模拟化学现象,如光化学反应、涉及过渡金属配合物的催化过程、光合作用、太阳能电池操作等,需要准确模拟分子基态和激发态。此类系统的电子激发态通常具有很强的相关性,因此需要使用复杂的量子化学理论来准确描述它们。在过去的几十年里,在这方面已经开发了许多方法。 24 – 32 运动方程耦合团簇 (EOM-CC) 26 方法最初由 Stanton 和 Bartlett 开发,是一种常用的例子,通常用于计算分子激发态特性,例如激发能
摘要 在机器学习中,较少的特征会降低模型的复杂性。因此,仔细评估每个输入特征对模型质量的影响是至关重要的预处理步骤。我们提出了一种基于二次无约束二进制优化 (QUBO) 问题的新型特征选择算法,该算法允许根据特征的重要性和冗余度选择指定数量的特征。与迭代或贪婪方法相比,我们的直接方法可以产生更高质量的解决方案。QUBO 问题特别有趣,因为它们可以在量子硬件上解决。为了评估我们提出的算法,我们使用经典计算机、量子门计算机和量子退火器进行了一系列数值实验。我们的评估将我们的方法与各种基准数据集上的一系列标准方法进行了比较。我们观察到了具有竞争力的表现。
皮肤癌、恶性黑色素瘤 (MM) 和非黑色素瘤皮肤 (NMSC) 的发病率在世界范围内呈上升趋势。欧洲每年报告的 MM 新病例超过 144,000 例,每年导致超过 27,000 人死亡 [1,2]。最常见的 NMSC 是基底细胞癌 (BCC) 和鳞状细胞癌 (SCC)。然而,欧洲 NMSC 的确切数量无法确定,因为并非所有肿瘤都收集在本地数据库中。来自德国的数据显示,2010 年的发病率为 119-145/100.00 [3,4]。BCC 和 SCC 通常预后良好,但也有可能出现局部破坏性生长,在晚期病例中还可能发生转移性疾病。据报道,BCC 的转移率为 0.0029% 至 0.55%,常见部位是区域淋巴结、肺、骨骼、皮肤和肝脏。据报道,专注于 SCC,所有患者中约有 4% 会发生转移,1.5% 死于该疾病 [ 5 – 9 ]。美国皮肤病学会 [ 10 ] 的最新数据估计,NMSC 每年影响超过 300 万美国人,2020 年诊断出 196,060 例新发黑色素瘤病例。尽管过去十年转移性皮肤癌的治疗取得了进展,但死亡率(尤其是 MM 的死亡率)仍然在很大程度上取决于其早期发现 [ 11 – 13 ]。根据 AJCC-8 分类(美国癌症联合委员会),极薄黑色素瘤的 5 年生存率接近 100%,但晚期黑色素瘤的 5 年生存率不到 30%。因此,早期发现皮肤癌对于避免转移性疾病以及高发病率和死亡率至关重要。值得注意的是,医疗保健成本是另一个可能受早期发现影响的重要因素。澳大利亚最近的一项研究显示,转移性黑色素瘤每例每年平均费用为 115.109 澳元;相比之下,早期 0-1 期黑色素瘤的年平均费用约为 1681 澳元[14]。越来越多的证据表明,人工智能是各个医疗领域(如放射学和皮肤病学)的宝贵补充工具[15,16]。新技术工具的出现,特别是卷积神经网络(CNN),使得基于图像的体外各种皮肤病诊断成为可能[17]。多项研究[18-28]调查了CNN在黑色素瘤识别方面的诊断准确性。值得注意的是,目前大多数皮肤癌识别网络已用于高质量图像的分类。然而,在现实情况下,必须考虑到图像质量和图像特征的巨大差异。最近的一项荟萃分析[29]报告了基于智能手机的应用程序性能不可靠;性能最好的应用程序的灵敏度为80%,特异性为78%。