摘要本研究研究了用多壁碳纳米管(MWCNT)加强热塑性聚氨酯(TPU)复合材料的机械性能,以在运动保护齿轮中应用。目标是(1)系统地评估MWCNT载荷水平和对齐对拉伸,压缩,硬度和影响特性的影响; (2)确定用于平衡增强的最佳MWCNT含量范围; (3)探索可扩展的制造方法。MWCNT/TPU复合材料具有0.5-4 wt%的负载,通过溶液混合和压缩成型预先折扣。机械测试显示出显着改善,有62 MPa拉伸强度(+19%),507 MPa模量(+23%)和1-4 wt%MWCNT的撞击能量吸收增加10%。MWCNT对齐进一步增强了性能,而高于2 wt%的负载显示一些封闭。微结构表征证明了良好的MWCNT分散和界面键合。结果表明,低MWCNT添加可以大大提高TPU的强度,刚度和撞击性。这表明开发了具有改善能量吸收和硬脑膜功能的头盔和垫子(例如头盔和垫子)的高级,轻巧的运动保护设备的巨大潜力。未来的工作将着重于针对特定齿轮应用的复合处理和设计。
在马来西亚产生的年度聚合物废物已大大增加到超过100万吨。各种工业聚合物废物流所需的延长降解期是一个重大关注的问题,其中有些人需要长达1000年才能充分降级。追求类似的环境问题,使用巴库桩作为砂拉越轻量化结构的支持,包括排水系统,道路,下水道和其他与水相关的结构,由于森林地区的侵蚀而成为一个问题。Bakau森林砍伐和聚合物废物问题都引起了重大环境和全球关注。减轻红树林降解和聚合物废物的不可生物降解性质的想法导致了替代解决方案的概念化,从而利用可回收的热塑性聚合物桩用于取代Bakau Pil,从而在土木工程建筑项目中为轻量级的结构提供支持。因此,对聚合物桩进行研究以检查其机械性能,形式(V)和再生(R)热塑性聚合物。在此
摘要:碳纤维增强聚合物(CFRP)复合材料属于高级类复合材料,在战略应用中通常是首选。然而,在制备增强树脂,易发的基质和纤维 - 矩阵界面中形成的脆性,气泡通常会导致复合结构在分层和灾难性衰竭方面导致复合结构的失败。So, in the current work, Epoxy matrix CFRP composites are made using a hand lay-up process with varied amounts of Graphene Oxide (GO) (0%,0.25%,0.5%, and 1%) as a Nano Filler with Epoxy Polymer and nearly 90% of air bubbles are removed with the help of vacuum pump and desiccator.样品将根据ASTM标准制备,并在张力和3点弯曲条件下进行测试。在0.25%,1%GO增强复合材料的最大拉伸强度,最大弯曲强度为866.67mpa和761.22mpa。关键词:复合材料,CFRP,环氧树脂,碳纤维,拉伸试验,弯曲试验,氧化石墨烯(GO),环氧树脂,硬化剂
这项研究研究了在液氮衰老之前和之后,聚苯乙烯(PEEK)和PEEK COM的机械和摩擦学特性5个月。在25°C和-100°C下进行的摩擦学测试在空气和高真空(10-5 PA)环境中揭示了基质修饰,填充剂,环境,温度和低温衰老对其性能的影响。聚合物的低温衰老导致低温含量和骨折韧性的降低约10%,磨损速率提高至少20%。在碳纤维,石墨和PTFE增强PEEK的低温真空环境中实现了非常低的摩擦系数(0.02)。结果表明衰老,温度和环境对PEEK及其复合材料的显着影响。
1化学技术学院Kaunas技术学院环境技术系,LT-50254 Kaunas,立陶宛; tamari.mumladze@ktu.lt(t.m.); gintaras.denafas@ktu.lt(G.D。)2化学与环境技术系,佐治亚州库塔西岛4600号库塔西岛Akaki Tsereteli州立大学技术工程学院3材料研究与测试实验室,Lithuanian Energy Institute,Lithuanian Energy Institute,LT-4444444403 KAAUNIA,LITHUANIA,LITHUANIA,LITHUANIA; vidas.makarevicius@lei.lt(V.M.); rita.kriukiene@lei.lt(R.K.)4机械与工业工程系,塔林技术大学,19086年,爱沙尼亚塔林; maksim.antonov@taltech.ee 5,维尔纽斯·盖迪米纳斯技术大学环境保护与水工程系,立陶宛维尔纽斯维尔尼乌斯; saulius.vasarevicius@vilniustech.lt *通信:agne.sleiniute@ktu.lt
具有所需特性的合金可以通过控制组合物或加工[9,10]来定制微结构来开发。因此,研究人员搜索可以改善纯铅的概念的合金元素[11-13]。在此类元素中是钡和锡,增加了铅的增加,增加了拉伸强度和蠕变耐药性[14-20]。此外,钡引入铅锡合金还会增加硬度,减少电化学活性,从而增加腐蚀稳定性[21]。钡还可以使这些特性保持稳定,因为防止了过度衰老。高含量的锡的存在也抑制了铅基合金的过度分支过程[22]。另外,通过防止钝化并允许电池从深处排放的条件中弥补电池的钝化和充电,锡罐有助于网格的电化学性质。
摘要:缺陷和微观结构对TI-6AL-4V焊缝的机械性能的影响;等离子体电弧焊接;电子梁焊接;在目前的工作中研究了激光束焊接。评估了微硬度的不同焊接类型的机械性能;产量强度;最终的拉伸强度;延性以及在室温和升高温度下(200℃和250℃)的疲劳。的晶体学对不同焊接类型的微观结构进行表征,并进行了分裂研究以将缺陷对疲劳性能的影响联系起来。电子和激光束焊接比钨惰性气体焊接和等离子体弧焊接产生的微结构,更高的拉伸延展性和更好的疲劳性能。大毛孔和靠近标本表面的孔最不利于疲劳寿命。
AISI 630不锈钢被降水硬化(pH)硬化(pH)越来越多地用作Maraging钢。在这项研究中,在室温下检查了这些钢的微结构和某些拉伸性能。此外,通过对pH钢进行夏比冲击测试来计算材料的冲击吸收能。该值计算为138.9 J,非常接近其他研究人员获得的值。
无铅焊料互连中的机械性能和故障机制的演变,特别是98.5SN1.0AG0.5CU(SAC105),不断受等于等温老化和热负载的影响。准确预测电子组装的可靠性,必须将这些老化效应整合到焊料热疲劳的有限元分析框架内。本文努力阐明了静脉老化对热循环下SAC105互连机械行为的影响。利用有限元方法以及现有文献的材料本构参数,研究研究了两个关键的本构模型 - Anand和Garofalo。蠕变行为被吸收到模型中,以评估在热循环过程中老化的SAC105的机械响应。的发现表明,等温衰老会显着改变SAC105焊料的热机械性能,尤其是在短暂的衰老期之后,并且在延长持续时间内影响下降。数值分析证实了SAC105的机械响应中次级蠕变的占主导地位,而不是各向同性硬化或粘膜可塑性。此外,这项研究提供了使用基于应变和基于能量的疲劳模型的预分级焊料热疲劳的全面评估。洞察力显示,与未衰老的焊料相比,老年焊料的寿命降低,并且衰老延长与加剧的热疲劳降解相关。这些结果提供了关键的理解,以增强电子组装中焊料互连的可靠性预测。