黄杆菌属是拟杆菌门中一个相对未被探索的属。最近对植物微生物组的分析已将拟杆菌门确定为植物根际的主要细菌群。虽然拟杆菌门中的黄杆菌属物种已被确认为水生生境中的病原体,但微生物组分析和新型黄杆菌属物种的表征表明它们在各种环境中存在的巨大多样性和潜力。许多黄杆菌属物种对植物的健康和发育有积极的贡献,包括促进生长、疾病控制和对非生物胁迫的耐受性。尽管黄杆菌属物种与植物的有益相互作用已被详细描述,但这些相互作用背后的分子机制和细菌决定因素仍不清楚。为了加深对黄杆菌属在植物健康中的作用的理解,我们回顾了最近的研究,重点关注它们的生态位、功能作用以及植物与有益相互作用的决定因素。此外,本综述还讨论了解释植物之间相互作用的假定机制
在确定为水污染物的细菌中,已分离出革兰氏阴性菌,特别是属于假单胞菌属、黄杆菌属、加利昂氏菌属、气单胞菌属、弧菌属、无色杆菌属、产碱杆菌属、博德特氏菌属、奈瑟菌属、莫拉菌属和不动杆菌属的细菌。然而,符合水质潜在生物指标特征的细菌群是大肠菌群、肠杆菌科或肠杆菌科,兼性厌氧、不产生孢子、产气和糖酵解乳糖发酵菌,最终产物为酸。它们占人类和动物肠道微生物的 10%,因此它们在水中的存在与粪便污染有关,表明处理不充分或随后受到污染。(Ríos-Tobón 等人,2017 年)
白癜风与肠道菌群存在潜在的相关性,但目前这方面的研究有限。该研究采用16S rRNA高通量测序技术检测49例白癜风患者和49例非白癜风患者粪便样本的肠道菌群。研究包括四个对照组:(1)DI(疾病)组vs. HC(健康对照)组;(2)DI_m组(未成年人疾病组)vs. HC_m组(未成年人健康对照组);(3)DI_a组(成人疾病组)vs. HC_a组(成人健康对照组);(4)DI_m组vs. DI_a组。研究结果表明白癜风患者与健康对照者的肠道菌群组成存在空间异质性。无论是未成年人组还是成年人组,白癜风患者的肠道菌群多样性都显著降低。但不同年龄段白癜风患者肠道菌群差异已得到证实,其中拟杆菌属和副拟杆菌属已被鉴定为白癜风未成年组和成年组患者肠道菌群的特异性标记物,相关性分析显示,这两个菌属与白癜风面积评分指数(VASI)和病程呈正相关。值得注意的是,DI_m组和DI_a组之间的菌群多样性差异并不显著,菌群组成和功能特征相似。然而,相关性分析表明,随着年龄的增长,拟杆菌属和副拟杆菌属呈下降趋势。白癜风患者肠道菌群与健康对照组相比有明显差异,且不同年龄段患者与健康对照组之间存在差异的微生物标记物属也不同。疾病特异性微生物标记属(拟杆菌属和副拟杆菌属)与 VASI、病情持续时间和年龄有关。这些发现对于改善白癜风患者的早期诊断和制定潜在治疗策略至关重要。
抽象的有氧γ-细菌甲烷嗜酸菌(GMOB)是控制淡水生态系统中甲烷 - 氧化界面的关键生物。在低氧环境下,GMOB可能将其有氧代谢转移到发酵中,从而导致细胞外有机酸的产生。我们最近分离了代表甲基杆菌属的GMOB菌株。北方湖水柱的 s3l5c)并证明它在低氧条件下将甲烷转化为有机酸(乙酸盐,甲酸盐,苹果酸和丙酸)。 对分离株基因组中有机酸产生的推定基因的注释以及代表甲基杆菌属的环境元基因组组装基因组(MAGS)。 表明,甲烷转化为有机酸的潜力在甲基杆菌属中广泛发现。 淡水生态系统。 但是,尚不清楚将甲烷转化为有机酸的能力是否仅限于甲基杆菌属。 或普遍存在的其他淡水GMOB属。 因此,我们从北方湖水柱中分离了两个额外的GMOB属的代表,即甲基瘤paludis s2am和甲基伏洛伏氏菌精神分裂症S1L,以及类似的生物转化能力。 这些属可以将甲烷转化为有机酸,包括醋酸盐,甲酸盐,琥珀酸酯和苹果酸。 另外,S2AM产生了乳酸。 此外,我们检测到编码其基因组中的有机酸产生的基因和代表甲基瘤属的MAG中。 和甲基化属。s3l5c)并证明它在低氧条件下将甲烷转化为有机酸(乙酸盐,甲酸盐,苹果酸和丙酸)。对分离株基因组中有机酸产生的推定基因的注释以及代表甲基杆菌属的环境元基因组组装基因组(MAGS)。表明,甲烷转化为有机酸的潜力在甲基杆菌属中广泛发现。淡水生态系统。但是,尚不清楚将甲烷转化为有机酸的能力是否仅限于甲基杆菌属。或普遍存在的其他淡水GMOB属。因此,我们从北方湖水柱中分离了两个额外的GMOB属的代表,即甲基瘤paludis s2am和甲基伏洛伏氏菌精神分裂症S1L,以及类似的生物转化能力。这些属可以将甲烷转化为有机酸,包括醋酸盐,甲酸盐,琥珀酸酯和苹果酸。另外,S2AM产生了乳酸。此外,我们检测到编码其基因组中的有机酸产生的基因和代表甲基瘤属的MAG中。和甲基化属。湖泊和池塘生态系统。总的来说,我们的结果表明,甲烷转化为各种有机酸是湖泊和池塘GMOB之间广泛发现的性状,突出了它们作为甲烷碳的关键介质的作用,以供淡水湖和池塘生态系统的微生物食品网。
温血动物(包括鸟类)肠道中自然存在的大肠杆菌是淡水水质监测中粪便污染的常用指标,可作为粪便污染和病原体的替代指标(1)。然而,目前用于计数大肠杆菌的培养方法无法区分粪便大肠杆菌和归化或环境相关的“类大肠杆菌”菌株,也称为大肠杆菌隐蔽进化枝(2-4)。Escherichia whittamii(隐蔽进化枝 2)(5)、Escherichia ruysiae(隐蔽进化枝 3 和 4)(6)和 Escherichia marmotae(隐蔽进化枝 5)(7)是最近描述的类群,但宿主物种和环境持久性仍有待确定。该项目专注于大肠杆菌和大肠杆菌属的全基因组测序。来自环境来源(淡水、河流沉积物、水生生物膜、土壤和鸟类及哺乳动物的粪便)。菌株是在研究对比土地使用对大肠杆菌属的影响的研究中获取的,并按照之前描述的方式进行培养(8)。大肠杆菌和新大肠杆菌属的基因组数据将提供有关这些细菌在环境中存活的信息和更准确的粪便追踪,从而能够识别并迅速解决影响水道的最严重污染源。
现代农业专门基于外部应用的农业化学物质,使土壤生育能力易受伤害。土壤传播细菌的外部应用是即将到来的可持续系统,它将维持土壤生育能力并同时增强植物的生长。总共属于Azotobacter spp的15种细菌分离株。是从浦那地区不同农田的不同根际土壤中分离出来的。所有分离株均被筛选以促进其植物生长,即giberellicac(GA)和吲哚乙酸(IAA)产生,并在生化上进行了表征。3(AZO1,AZO2和AZO3)分离株显示出最高的GA(0.10、0.15和0.30 mg/ml)和IAA(0.29、0.25和0.25和0.15 mg/ml)的生产效率。这三个有前途的分离株对鹰嘴豆的生长和健康(Cicer Arietinum L)显示出积极影响。
众所周知,发酵食品中的微生物含有代谢产物,可能改善人类和动物的健康。然而,尽管对发酵食品的功能作用进行了一些研究,但有效芽孢杆菌菌株的分离和鉴定仍在进行中。本研究的目的是从分子上鉴定发酵食品来源中产生生物膜的芽孢杆菌属 (BPB) 和酵母,并研究它们与 Lysinibacillus louembei 菌株的相互作用。共获得 133 个芽孢杆菌分离株以及 32 个酵母分离株,以进行详细鉴定和研究。根据使用 fibE 聚合酶链式反应 (PCR) 多重和 ITS-PCR 技术的表型和分子表征,芽孢杆菌属的种类被鉴定为短小芽孢杆菌 (12%)、枯草芽孢杆菌 (12%)、萨法芽孢杆菌 (6%)、解淀粉芽孢杆菌 (6%)、地衣芽孢杆菌 (6%) 和酿酒酵母 (0.05%)。使用多重 PCR 扩增了枯草芽孢杆菌、地衣芽孢杆菌和短小芽孢杆菌中参与生物膜形成过程的 yfi Q、eps H、ymc A 和 tas A 基因,并对其进行了鉴定和确认。作为表型结果,使用刚果红琼脂法 (CRA) 鉴定了 45% 的 BPB 分离株。使用乳化指数 (EI24) 测试了芽孢杆菌和酵母生产生物表面活性剂的能力。65% 和 69% 的芽孢杆菌和酵母分离株能够乳化汽油。56% 的芽孢杆菌分离株生物表面活性剂粗提取物对大肠杆菌、金黄色葡萄球菌和沙门氏菌表现出抗菌活性。在芽孢杆菌属、酿酒酵母和 L. louembei 之间进行了培养。结果,在酵母菌株 V3 与 B. pumilus 菌株 VB15 以及 L. louembei 与解淀粉芽孢杆菌中获得了类共生相互作用,在酿酒酵母菌株 P3 和芽孢杆菌属中获得了类竞争相互作用。菌株 VP11,以及与 B. pumilus 和 S. cerevisiae 以及芽孢杆菌属菌株 VP34 和 S. cerevisiae 菌株 P1 的类反式相互作用。这些结果表明,微生物在发酵过程中保持着不同的关系。关键词:芽孢杆菌、酿酒酵母、Lysinibacillus louembei、发酵食品、微生物相互作用、生物表面活性剂、生物膜。引言微生物对各种食品的发酵是最古老的食品生物保存形式之一(Diaz-
阴道微生物区系是一个动态的生态系统,通常由乳酸杆菌栖息。这些细菌通过维持不适合其他病原微生物生存的酸性环境来维持健康的阴道状态。L. crispatus、L. gasseri、L. jensenii 和 L. iners 被认为是四种主要的阴道乳酸杆菌属(1、2、3)。通常,阴道菌群由其中一种细菌主导,伴随数量较少且较少检测到的次要乳酸杆菌属,包括 L. acidophilus、L. johnsoni、L. vaginalis、L. fermentum 和 L. reuteri(4)。阴道中乳酸杆菌的数量可防止其他病原体在其上定植。女性性健康和生殖健康的许多重要方面都依赖于乳酸杆菌在阴道环境中的保护作用。
摘要背景:来自哈茨木霉的 L-赖氨酸-α-氧化酶是一种很有前途的抗癌、抗真菌和抗菌剂。深入探索其物理化学性质和可能的应用方式需要足够数量的蛋白质,而这又取决于微生物生产者的良好培养技术、酶软分离和纯化以及储存技术。方法:提出了一种改进的酶分离和纯化方法。采用特定的柱吸附剂组合,并采用氯化钠梯度洗脱来提高酶的产量。测试了短杆菌属代谢产物 (MP) 以及 Ulocladium sp. 和木霉属真菌代谢物的诱导影响。酶活性测定基于在过氧化物酶反应与 L-赖氨酸-α-氧化酶反应相结合的情况下检测氧化的二甲基联苯胺。还探索了一些酶特性。结果:改进后的分离纯化工艺使酶得率达到79%左右。所有短杆菌属菌株均能有效增强L-赖氨酸-α-氧化酶活性及其伴随活性。诱导的酶似乎特异性较低但热稳定性更高。讨论了改性酶的可能应用范围。磷酸盐缓冲液(pH=5.6)似乎是长期保存酶的最佳溶液。结论:检测到短杆菌属MP对L-赖氨酸-α-氧化酶有明显的诱导作用,并改进了其分离纯化工艺。关键词:抗菌剂、抗真菌、抗肿瘤、短杆菌、L-赖氨酸氧化酶、木霉、哈茨木霉 引用本文:Smirnova I、Neborak E、Shkinev V、Larichev V、Shneyder Y、Bashkirova I 等。短杆菌属代谢产物诱导哈茨木霉 L-赖氨酸-α-氧化酶及其分离纯化技术的改进。Avicenna J Med Biotech 2025;17(1):39-46。