摘要:Stelite-6/Inconel 718功能梯度材料(FGM)是一种耐热的功能梯度材料,在超高温度(650-1100℃)下具有出色的强度性能(650–1100°C),因此在航空通道和航空航天工程中具有潜在的应用,例如发动机涡轮机。为了研究初始温度对激光金属沉积(LMD)功能梯度材料(FGM)的微结构和性能的影响,本文使用LMD技术在两个不同的初始温度下形成Stelite-6/Inconel 718 FGM 718 FGM:室温和预加热(300℃)。分析内部残留应力分布,元素分布,微结构,拉伸特性和微硬度的100%Stelite-6至100%Inconel 718 FGM在不同初始温度下形成的10%梯度,在不同的初始温度下形成。实验结果证明,高初始温度有效地改善了内部残留应力的不均匀分布。预热减慢了熔体池的固定时间,并促进了气体的逃脱以及熔体池中元素的均匀扩散。此外,预热可降低梯度层之间的键合面积,从而增强层之间的冶金键合特性并改善拉伸性能。与在室温下形成的Stellite-6/Inconel 718 FGM相比,平均屈服强度,平均拉伸强度以及在300°C形成的Stellite-6/Inconel 718 FGM的平均伸长率增加65.1 MPa,97 MPa,97 MPa和5.2%。但是,高初始温度将影响材料的硬度。在300°C时形成的星状-6/Inconel 718 FGM的平均硬度比在20°C下形成的stellite-6/Inconel 718 FGM的平均硬度低于26.9 hv(Vickers硬度)。
摘要:增材制造 (AM) 工艺使其能够广泛应用在从航空航天到艺术、设计和建筑等各个领域。零件质量和性能是 AM 工艺执行过程中的主要关注点,考虑到工艺参数、材料、环境、测量和操作员培训等多种影响因素,可以保证实现足够的特性。研究不仅有影响的 AM 工艺变量的影响,而且研究它们的相互作用和耦合影响对于需要付出巨大努力的工艺优化至关重要。因此,数值模拟可以成为一种有效的工具,有助于评估 AM 工艺原理。选择性激光熔化 (SLM) 是一种广泛的粉末床熔合 (PBF) AM 工艺,由于其优越的优势,例如能够打印复杂且高度定制的组件,因此越来越受到工业和学术界的关注。温度分布和熔池动力学对于在 SLM 过程中很好地模拟和关联零件质量(表面光洁度、诱导残余应力和微观结构演变)至关重要。本综述总结了 SLM 的数值模拟,指出这是一个重要的研究视角,同时也探索了所采用的方法和实践的贡献。本综述旨在概述 AM 工艺,例如挤压、光聚合、材料喷射、层压物体制造和粉末床熔合。特别是针对讨论对 SLM 进行的数值模拟,以说明现有非专有方法的统一图景,以预测传热、熔池行为、微观结构和残余应力分析。
1 中国科学院微电子研究所微电子器件与集成技术重点实验室,北京 100029;liyongliang@ime.ac.cn(YL);zhouna@ime.ac.cn(NZ);zhangqingzhu@ime.ac.cn(QZ);duanyan@ime.ac.cn(AD);zhangyongkui@ime.ac.cn(YZ);gaojianfeng@ime.ac.cn(JG);kongzhenzhen@ime.ac.cn(ZK);linhongxiao@ime.ac.cn(HL);xiangjinjuan@ime.ac.cn(JX);lichen2017@ime.ac.cn(CL);yinxiaogen@ime.ac.cn(XY);liyangyang@ime.ac.cn(YL);wangxiaolei@ime.ac.cn(XW);yanghong@ime.ac.cn(HY); maxueli@ime.ac.cn (XM); hanjianghao@ime.ac.cn (JH); tyang@ime.ac.cn (TY); lijunfeng@ime.ac.cn (JL); yinhuaxiang@ime.ac.cn (HY); zhuhuilong@ime.ac.cn (HZ); rad@ime.ac.cn (HHR) 2 中国科学院大学微电子研究所,北京 100049 3 北京有色金属研究总院智能传感新材料国家重点实验室,北京 100088 4 北方工业大学电子信息工程学院,北京 100144;zhangj@ncut.edu.cn (JZ); tairanhu1@gmail.com (TH) 5 中瑞典大学电子设计系,Holmgatan 10, 85170 Sundsvall,瑞典 * 通讯地址:lijunjie@ime.ac.cn (JL); wangwenwu@ime.ac.cn (WW); wangguilei@ime.ac.cn (GW); 电话:+ 86-010-8299-5508 (WW)
摘要:这项研究的重点是通过通过静电纺丝过程将银纳米颗粒(AGNP)掺入聚乙烯二烯氟化物(PVDF)纳米纤维中来制备复合纳米蛋白酶。对与PVDF相关的研究进行了简短综述。PVDF以其生物相容性和压电特性而闻名。由于已经证明生物组织中的电信号与治疗应用有关,因此研究了AGNP向PVDF添加对PVDF对压电性的影响,因为AGNP的能力增加了压电信号,以及提供抗细菌特性。通过扫描电子显微镜,能量分散性X射线光谱和傅立叶变换红外光谱法对制备样品进行表征。此外,使用细胞毒性测定法和对抗菌活性的评估检查了复合材料的生物学活性。获得的结果表明,与溶液铸造的样品相比,已经通过静电纺丝过程改进了PVDF纳米纤维进一步增强了压电性(结晶β-相分数),但仅具有AGNPS/PVDF浓度最高0.3%;纳米颗粒的进一步增加导致β相还原。细胞毒性测定显示PVDF/AGNPS纳米纤维对MDA-MB-231乳腺癌细胞系的有希望的作用,这是在对健康的MRC-5细胞系中显示出的无毒性。由于Ag含量,PVDF/AGNPS纳米纤维的抗菌作用表现出有前途的抗菌活性和金黄色葡萄球菌的抗菌活性。抗癌活性,结合纳米纤维的电特性,为癌症治疗开发的智能多功能材料提供了新的可能性。
摘要:由于其理想的特性,例如生物相容性,化学稳定性,负担得起的价格,耐腐蚀性和易于再生,因此最近在P-MFC中最广泛使用了碳电极。通常,基于碳的电极,尤其是石墨,是在非常高温下基于石油衍生物的复杂过程产生的。本研究旨在从生物味和木炭粉中产生电极,以替代石墨电极。通过Robinia Pseudoacacia和Azadirachta Indica木材的碳化获得了用于生产电极的碳。这些碳被粉碎,筛为50 µm,并用作电极制造的原材料。使用的粘合剂是源自椰子壳作为原材料的生物味。生物诉的密度和焦化值揭示了其作为电极制造煤炭螺距的良好替代品的潜力。通过将每种碳粉的66.50%和33.50%的生物味混合来制造电极。将所得的混合物模制成直径8毫米的圆柱管,长度为80毫米。在800°C或1000℃的惰性培养基中对获得的原始电极进行热处理。通过四点方法获得的电阻率表明,N1000的电阻率至少比所有发达的电极低五倍,而两倍的电阻率是G.傅立叶转换红外光谱(FTIR)的两倍,用于确定样品的组成特征,表面粗糙度由ATOMIC ERTORIC MIRCOPOPY(AFM)表征(AFM)。通过电阻抗光谱(EIS)确定电荷转移。电极的FTIR表明N1000的频谱与G相比与G的频谱更相似。EIS显示了离子的高离子迁移率,因此N1000与G和其他离子的电荷转移更高。AFM分析表明,N1000在这项研究中具有最高的表面粗糙度。
摘要:由于切削力过大、表面完整性低和刀具磨损,通过传统金属切削工艺加工用于骨科植入物的钛合金 (Ti6Al4V) 具有挑战性。为了克服这些困难并确保高质量的产品,各行各业都采用线切割电火花加工 (WEDM) 来精确加工形状复杂的钛合金。目标是使用 Box-Behnken 设计 (BBD) 和非支配排序遗传算法 II (NSGA II) 使 WEDM 加工参数尽可能高效地加工生物相容性合金 Ti6Al4V。创建了一个二次数学模型来表示生产率和质量因子 (MRR 和表面粗糙度),输入参数包括不同的输入参数,例如脉冲有效 (T on) 时间、脉冲无效 (T off) 时间、峰值幅度 (A) 电流和施加的伺服 (V) 电压。建立的回归模型和相关的预测图提供了一种可靠的方法来预测工艺变量如何影响两个响应,即 MRR 和 SR。研究了四个工艺变量对两种响应的影响,结果表明脉冲持续时间和电压对材料去除率 (MRR) 有重大影响,而脉冲持续时间则影响质量 (SR)。当包含重要的工艺因素时,MRR 和 SR 之间的权衡强调了对可靠的多目标优化方法的需求。利用名为非支配排序遗传算法 II (NSGA II) 的智能元启发式优化方法提供帕累托最优解,以实现高材料去除率 (MRR) 和低表面粗糙度 (SR)。
摘要:本文介绍了采用脉冲反应磁控溅射法制备的氧化锌涂层的微观结构、光学、电学和纳米机械性能的研究结果。在金属、浅介质和深介质溅射模式下沉积了三组 ZnOx 薄膜。结构研究表明,在金属模式下沉积的薄膜为纳米晶,具有金属锌和氧化锌的混合六方相,晶粒尺寸分别为 9.1 和 6.0 nm。相反,在两种介电模式下沉积的涂层均具有纳米晶 ZnO 结构,平均晶粒尺寸小于 10 nm。此外,在介电模式下沉积的涂层在可见光波长范围内的平均透射率为 84%,而在金属模式下沉积的薄膜是不透明的。电性能测量表明,沉积态薄膜的电阻率在 10 − 4 Ω cm 至 10 8 Ω cm 范围内。以金属模式沉积的涂层硬度最低,为 2.2 GPa,耐刮擦性在所有溅射涂层中最低,而以深介电模式溅射的薄膜具有最佳的机械性能。所得硬度为 11.5 GPa,是迄今为止文献中报道的未掺杂 ZnO 的最高硬度之一。
Rodale Institute。 (2014)。 再生有机农业和气候变化:全球变暖的脚踏实地。 / Rodale Institute。 (n.d。)。 再生有机农业。 /通用磨坊。 (n.d。)。 再生农业。 / Newton,P。等。 (2020)。 什么是再生农业? 基于过程和结果对学者和从业者定义的审查;可持续食品系统的前沿,第194页。Rodale Institute。(2014)。再生有机农业和气候变化:全球变暖的脚踏实地。/ Rodale Institute。(n.d。)。再生有机农业。/通用磨坊。(n.d。)。再生农业。/ Newton,P。等。(2020)。什么是再生农业?基于过程和结果对学者和从业者定义的审查;可持续食品系统的前沿,第194页。
摘要:难熔铌硅基合金因其在超高温下优异的力学性能,是一种颇具吸引力的高温结构合金,尤其可用作燃气涡轮发动机的结构部件。然而,由于室温断裂韧性和高温强度之间的权衡,铌硅基合金的应用发展受到限制。本文,我们报道了通过选择性激光熔化 (SLM) 制备分散有碳化铪 (HfC) 颗粒的 Nb-18Si 合金。利用 XRD 和 SEM-BSE 研究了扫描速度对沉积的 Nb-18Si-5HfC 合金的微观结构和相结构的影响。结果表明,随着扫描速度的升高,固溶体的固溶度提高,共晶的层间距缓慢减小到纳米级,相应的碳化铪分布变得更加均匀。还发现碳化铪颗粒弥散分布于层间结构中,使其在室温下具有较高的断裂韧性性能(20.7 MPa·m 1/2),通过对组织形貌和碳化物分布的控制,实现了硬度与断裂韧性的同步提高。