• 根据高斯定律,平行板电容器的最大电荷面积密度由 ε r E b 决定。ε r 和 E b 都是电介质的性质。E b 也称为电介质完整性。• 在半导体和器件物理学中,我们使用的单位系统主要是 SI,但长度用 cm 代替 m。
摘要 在材料科学中,可控和不可控描述符均可用于表征材料。可控描述符的例子包括元素组成和制造过程;相反,不可控描述符由表征特定样品的实验数据生成,例如原始光谱数据或比重。在本研究中,我们考虑一种实验设计来获得一个高精度预测模型,其中材料的不可控描述符是特征,其材料属性是标签。一般而言,由于不可控描述符与材料属性更密切相关,因此基于它们的预测将更准确。本研究中实验设计的目标不是改善材料属性本身,而是预测其属性。为了实现这种设计,我们选择合适的可控描述符来合成候选材料,当相应的不可控描述符和材料属性添加到训练数据中时,预测精度会提高。我们提出了两种实验设计方法,一种基于贝叶斯优化,另一种基于不确定性抽样。使用记录了可控和不可控描述符以及机械性能的聚合物数据库,我们确认我们的方法可以选择合适的候选材料来训练一个高精度预测模型,其中材料性能由不可控描述符预测。我们提出的方法可以应用于材料开发,其中不可控描述符比获得目标材料性能更容易通过实验获得;它也将有助于提取材料结构和性能之间的关系。
摘要:提出了通过涡流方法测量结果识别平面对象的材料属性的新方法。这些方法基于最新的替代策略和高级优化技术,这些技术可以提高效率并减少问题解决方案的资源消耗,并平衡计算复杂性与结果的准确性。用于全局替代优化的高性能元模型基于深度有意义的完全连接的神经网络,它是积累有关对象的APRIORII信息的附加功能。由测试过程的“精确”电动力学模型确定的多维响应表面的近似值可以通过根据计算机设计的计算机设计来确保,该计算是均质实验的计算机设计,其重量较低的对称中心差异。提供了用于完整和缩小的尺寸搜索空间进行的数值实验的结果,可以通过使用主要组件方法来获得线性转换获得。这些方法的验证证明了它们的良好精度和计算性能。
摘要 利用 H 2 /NH 3 的反应离子束蚀刻 (RIBE) 系统蚀刻磁隧道结 (MTJ) 材料,例如 CoFeB、Co、Pt、MgO,以及硬掩模材料,例如 W 和 TiN。与使用纯 H 2(无蚀刻)和 NH 3 的蚀刻相比,使用 H 2 和 NH 3 的混合气体,尤其是 H 2 /NH 3 (2:1) 比例,可以观察到 MTJ 相关材料的更高蚀刻速率和相对于掩模材料的更高蚀刻选择性 (>30)。此外,在蚀刻的磁性材料表面上没有观察到明显的化学和物理损伤,对于通过 H 2 /NH 3 (2:1) 离子束蚀刻的 CoPt 和 MTJ 纳米级图案,可以观察到高度各向异性的蚀刻轮廓 >83 ◦,没有侧壁再沉积。与 H 2 离子束或 NH 3 离子束相比,H 2 /NH 3 (2:1) 离子束对磁性材料(如 CoFeB)的蚀刻速率更高,这被认为与挥发性金属氢化物(MH,M = Co、Fe 等)的形成有关,这是通过暴露于 NH 3 离子束中在 CoFeB 表面形成的 M-NH x(x = 1 ∼ 3)的还原形成的。人们认为,H 2 /NH 3 RIBE 是一种适用于蚀刻下一代纳米级自旋转移力矩磁性随机存取存储器 (STT-MRAM) 设备的 MTJ 材料的技术。
和进一步经历了同性恋,导致多价相互作用和LLP的诱导。VP16被募集到CMV最小启动子提供的转录起始位点,并诱导报告基因表达。(b)调整转化因子冷凝物的材料特性。要修改凝结物材料特性,采用了两种策略:首先,通过将CRY2换成Cry2 Olig,从而增加了相互作用的价值,而Cry2 Olig构成了高阶寡聚物;其次,通过共转染编码融合到麦克里(可视化)和fus n和nLS的cry2 olig的结构来提高价值和浓度。与CRY2-EYFP-FUS N -VP16或CREY2 OLIG -EYFP-FUS N -VP16构建体(黄色和绿色数据点)共转染了编码CIBN-TER和基于TETO 4的SEAP报告基因。可选地,添加了编码Cry2 Olig -MCH -MCH -FUS n -nls的构造(以2:1的质粒量比为2:1相对于含VP16的构建体,红色和黑色数据点)。在进行FRAP分析之前,将细胞在黑暗中培养32小时。蓝光照明10分钟后(2.5 µmol m -²S-1)开始。 图像在液滴漂白之前直接显示出反应性核。比例尺= 5 µm。 图显示了根据n≥7凝结物回收曲线的非线性拟合计算出的移动部分的平均值和单个值(请参见右图)。 使用学生的t.test(*=p≤0.05; **** =p≤0.0001)进行成对比较。。图像在液滴漂白之前直接显示出反应性核。比例尺= 5 µm。图显示了根据n≥7凝结物回收曲线的非线性拟合计算出的移动部分的平均值和单个值(请参见右图)。使用学生的t.test(*=p≤0.05; **** =p≤0.0001)进行成对比较。
激光消融是一种可扩展的技术,用于通过高精度选择性去除材料来降低电极的有效曲折。应用于≈110μm厚的电极涂层,这项工作着重于理解激光消融对生命开始时电极材料特性的影响,以及在整个周期寿命中,消融通道对细胞性能的协同影响。研究了激光后的激光,晶体学的局部变化,并研究了激光冲击电极区域的形态。表明,飞秒脉冲激光消融可以在受影响区域的界面局部在本地局部造成较小的物质损害来实现高速材料的去除。在6C(10分钟)恒定电流恒定电压电荷到4.2 V期间从1 mAh cm-2提高了非驱动电极的1 mAh cm-2,到消化电极的几乎2 mAh cm-2。该好处归因于增强润湿和降低电极曲折的协同作用。维持超过120个周期的益处,并在拆卸后观察到石墨阳极上的液化降低。最后,与润湿分析结合使用的多物理建模表明,激光消除任何一种电极导致了润湿和速率能力的实质性改善,这表明只能通过仅将石墨阳极涂在两种电极上就可以实现实质性的性能益处。
1.1 目的 本文件旨在描述美国国家先进材料性能中心 (NCAMP) 用于材料特性数据采集、材料鉴定、材料允许值生成和材料等效性过程的标准操作程序 (SOP)。材料特性数据采集过程旨在生成具有足够谱系和控制的基本材料特性数据,以提交给《复合材料手册 17》(CMH-17) 的完整文档部分。材料允许值生成过程使用 CMH-17 程序和指南创建基于统计的基础值。材料鉴定过程涉及将新材料鉴定为符合材料采购规范,同时建立确保材料特性一致和可靠所必需的过程控制文件和过程规范。等效性过程旨在评估材料或工艺中微小变化的影响;它使用 DOT/FAA/AR-03/19 和 MIL-HDBK-17-1F 第 8.4.1 节中概述的统计测试将新数据集与现有数据集进行比较。NCAMP 是国家航空研究所 (NIAR) 下属的一个中心,独立于其他 NIAR 实验室和研究计划运作。
文献中引用最多的“材料特性”综合资源是 MATPRO [Siefken et al., 2001]。MATPRO 是燃料和包壳材料特性相关性的汇编,在燃料性能和严重事故规范中有着广泛的使用历史。自 2001 年以来,尽管对高燃耗材料特性的理解取得了进展,包壳合金和燃料类型也发生了变化,但 MATPRO 仍未更新。这些更新作为 FRAPCON [Geelhood et al., 2015b] 和 FRAPTRAN [Geelhood et al., 2015a] 代码的一部分记录在材料特性手册 [Luscher et al., 2015] 中。这些代码是 FAST [Porter et al., 2020a] 的前身。
LCP 薄膜的材料特性及其在 IT 相关设备中的广泛应用 Sunao Fukutake、Hiroshi Inoue JAPAN GORE-TEX INC. 日本东京 摘要 全芳香族聚酯是一种超级工程塑料,因其环境兼容性、防潮性、尺寸稳定性和耐热性而被视为电子电路的基础材料。利用三种芳香族聚酯中耐热性最高的 I 型全芳香族聚酯,我们成功地将其制成具有高度可控取向的薄膜材料。这种液晶聚合物薄膜(以下简称 LCP 薄膜(I))具有高达 280°C 的良好耐焊锡耐热性和高尺寸稳定性。其吸湿膨胀系数为 1.5 ppm/%,热膨胀系数可控制以与铜箔(16ppm/°C)相匹配。此外,LCP 薄膜(I)的吸水率极低,仅为 0.1%,约为聚酰亚胺薄膜的 1/10,在高频范围内表现出色。值得注意的是,LCP 薄膜(I)的原材料是热塑性树脂,是一种可回收材料。凭借这些优势,LCP 薄膜(I)的应用已扩展到需要 HDI 和高频性能的 IT 相关设备的 PWB 和 IC 封装。背景在 IT 相关领域,传输和处理的信息量不仅对日常业务运营很重要,也是许多应用的卖点。在信息传输领域,需要将光纤(有线)传输和无线传输有效结合起来,在信息处理领域,需要提高计算机的处理能力。虽然硬件和软件领域的进一步技术进步对于满足上述需求至关重要,但在硬件领域,我们的技术可以做出贡献,呈现出以下趋势。首先,我们可以说光传输技术已成为信息传输领域的标准技术。相反,对于无线传输技术,所用材料(包括塑料)仍处于开发阶段,而设备和传输逻辑已经建立。在无线传输技术中,由于需要在单位时间内传输更多信息,未来将应用更高的频率范围;然而,没有一种材料具有低介电损耗和高稳定性,可以在高频范围内轻松使用。在信息处理领域,需要更高的时钟频率来提高计算机的处理能力,以及增加终端(I/O)的数量。实际上,具有上述特性的高速高性能LSI的开发正在迅速进展。该领域还需要具有极精细尺寸精度的材料,它不仅介电损耗低、高频范围稳定,而且可以作为基材支撑精细安装的端子。
。cc-by-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。它是制作