机器学习的最新进展为算法交易开辟了新的可能性,从而在复杂的市场环境中优化了交易策略。本论文旨在通过开发机器学习模型来改善算法交易方法,以实现限制顺序书籍的现实模拟和学习最佳策略。由三篇论文组成,论文结合了理论见解与实际应用。第一篇论文介绍了使用经常性神经网络的限制顺序簿的动态探索的生成模型。该模型通过将每次限制订单簿的每个过渡的概率归结为订单类型,价格水平,订单大小和时间延迟的条件概率的产品,从而捕获了限制订单簿的完整动态。这些条件概率中的每一个都是通过复发性神经网络建模的。此外,本文引入了与订单执行相关的生成模型的几个评估指标。生成模型均经过由马尔可夫模型和纳斯达克斯德哥尔摩交换的真实数据进行的合成数据训练。第二篇论文提出了一种迭代性确定性政策方法,用于金融中随机控制问题,这使临时市场和永久性市场影响不大。该方法基于派生的策略梯度定理,并使用Mini Batch随机梯度下降进行优化。它都应用于OR-der执行和选项对冲,表明了几种目标和市场动态的表现始终如一。第三篇论文研究了具有基于参数的探索的策略梯度方法,其中在情节开始时采样单个确定性策略,并在整个情节中使用。显示了基于参数的和基于操作的外观之间的边际等效性,促进了以基于动作的指示的策略梯度方法的先前建立的收敛结果的适应。在温和的假设下呈现到一阶固定点的收敛速率,并且在引入的Fisher-Non-Non-depentore条件下建立了全球收敛,以基于参数 - 基于参数。
以在临床试验中测试一种药物是否与阻止致命癌症进展有关为例。定期概率更新意味着服用该药物会改变在规定的时间窗口内死于该疾病的条件概率,无论试验在何时何地进行。操纵意味着即使我们考虑影响患者生存的所有其他因素(例如年龄和合并症),药物治疗仍显示出额外的益处。反事实条件意味着如果不服用该药物,患者的死亡就不会被推迟。最后,作用机制意味着我们了解药物为何延长患者的生存期,例如通过激活肿瘤浸润免疫细胞。总之,这四个条件既确保了统计相关性,又确保了机械理解。他们将 Austin Bradford Hill 2 的因果关系标准置于因果背景中,并为在医疗保健中建立因果关系的哲学推理实施了实际测试。3
数学逻辑:命题逻辑;一阶逻辑:概率:条件概率;卑鄙,中位数,模式和标准偏差;随机变量;分布;制服,正常,指数,泊松,二项式。集合理论与代数:集合,关系,功能,群体,部分订单,晶格,布尔代数。组合学:排列,组合,计数,求和,生成功能,复发关系,渐近学。图理论:连通性,跨越树,切割的顶点和边缘,覆盖,匹配,独立集,着色,平面性,同构。线性代数:矩阵的代数,决定因素,线性方程系统,本特征值和本本矢量。数值方法:线性方程系统的LU分解,通过secant,bisection和Newton-Raphson方法的非线性代数方程的数值解;梯形和辛普森规则的数值集成。微积分:极限,连续性和不同性,平均值定理,积分的定理,确定和不当积分的评估,部分衍生物,总导数,Maxima&Minima。
1。工程数学数学逻辑:命题逻辑;一阶逻辑:概率:条件概率;卑鄙,中位数,模式和标准偏差;随机变量;分布;制服,正常,指数,泊松,二项式。集合理论与代数:集合,关系,功能,群体,部分订单,晶格,布尔代数。组合学:排列,组合,计数,求和,生成功能,复发关系,渐近学。图理论:连通性,跨越树,切割的顶点和边缘,覆盖,匹配,独立集,着色,平面性,同构。线性代数:矩阵的代数,决定因素,线性方程系统,本特征值和本本矢量。数值方法:线性方程系统的LU分解,通过secant,bisection和Newton-Raphson方法的非线性代数方程的数值解;梯形和辛普森规则的数值集成。微积分:极限,连续性和不同性,平均值定理,积分的定理,确定和不当积分的评估,部分衍生物,总导数,Maxima&Minima。
使用数据估计。5。做出最佳预测和预测模型。模块:1个基本统计3小时描述性统计:中心趋势,分散,偏度和峰度的度量 - 概率:条件概率模块:2个小样本测试5小时参数,统计参数,采样分布,采样框架,单个平均平均值,双平均值,f-测试,f-测试,f- f-的良好性,f- chi和bin fifiance fifcians fifiancials fifiance fifiance fifiance fit(bin)卡方检验的属性独立性。模块:3个大样本测试4小时z-单比例,两个比例,单个平均值,双平均值,相关系数的测试,Z-测试模块的某些应用:4实验设计4小时的方差分析 - 一条和两种方式分类 - 实验设计原理,CRD -RBD -RBD -LSD。
摘要:现代航空电子设备约占飞机总成本的 30%。因此,降低航空电子设备在使用寿命内的运行成本至关重要。本文讨论了创建适当的数字航空电子系统维护模型这一关键科学问题,从而显著提高其运行效率。在本研究中,我们提出了生命周期成本方程,以选择数字航空电子设备维护的最佳方案。所提出的成本方程考虑了飞行过程中发生的永久性故障、间歇性故障和误报。生命周期成本方程是针对飞机运行的保修期和保修期后间隔确定的。我们为每个服务期建模了几种维护方案。成本方程考虑了永久性故障和间歇性故障的特征、飞行中误报和真报的条件概率以及不同维护操作的成本、飞行时间和一些其他参数。我们已经证明,带有间歇性故障检测器的三级保修后维护方案是最佳的,因为与其他维护选项相比,它将预期总维护成本降低了几倍。
1 描述统计:a) 集中趋势测量 - 分组和非分组数据;平均值、样本平均值 - 加权平均值;中位数、四分位数、b) 十分位数和百分位数、箱线图、众数变异测量 - 离差、范围、标准差、总体与样本方差和标准差、偏度、峰度。2 概率和抽样分布简介:a) 分配概率的方法、概率空间、概率模型的条件、事件、简单和复合、概率定律、概率密度函数、累积分布函数、平均值和方差的预期值。边际、联合、联合和条件概率,贝叶斯定理 b) 随机变量、离散和连续分布、期望、分布矩、二项分布、泊松分布、均匀分布和正态分布、二项分布的正态近似、多个随机变量的分布、联合分布矩、独立性、协方差、相关系数、中心极限定理。3 假设检验:a) 总体参数的大样本估计和假设检验:估计总体均值和差异的基础知识;估计比例和差异;总体均值、差异的大样本检验;比例、差异的大样本检验。b) 总体方差的估计:方差的抽样分布,
线性代数基础知识:向量空间和子空间,基础和维度,血统转换,四个基本子空间。矩阵理论:规范和空间,特征值和特征向量,特殊矩阵及其特性,最小平方和最小规范的解决方案。矩阵分解算法-SVD:属性和应用,低等级近似值,革兰氏施密特过程,极性分解。尺寸还原算法和JCF:主成分分析,血统判别分析,最小多项式和约旦的规范形式。微积分:微积分的基本概念:部分导数,梯度,定向衍生物Jacobian,Hessian,凸集,凸功能及其属性。优化:无约束和受约束的优化,受约束和不受约束优化的数值优化技术:牛顿的方法,最陡的下降方法,惩罚函数方法。概率:概率的基本概念:条件概率,贝叶斯定理独立性,总概率,期望和方差定理,几乎没有离散和连续分布,联合分布和协方差。支持向量机:SVM简介,错误最大程度地减少LPP,双重性和软边距分类器的概念。参考书:
马克斯·玻恩斯 (Max Borns) 的统计解释 [11] 使概率在量子理论中扮演了重要角色。他假定两个归一化的希尔伯特空间元素的内积的模平方应该解释为两个希尔伯特空间元素所表示的纯态之间的转移概率。数学形式主义并没有为这种解释提供任何理由,但实验证据迫使我们接受它。在 Birkhoffer 和 von Neumann [10] 开创了量子逻辑理论之后,各种版本的量子力学转移概率被引入该理论。大多数方法通过附加公理假定这种版本的存在 [25, 34, 35, 45]。作者早期的方法基于射影量子测量(吕德斯 - 冯诺依曼量子测量过程)或经典条件概率的扩展 [37, 38]。之前的一篇论文 [41] 采用了不同的方法。其目的是指出量子的代数起源
1托马斯·贝叶斯(〜1701-1761)是英国部长和统计学家,他开发了一个相对简单的方程式,以将当前对结果或事件(E;称为先验概率)的信念转换为经过修订的和更新的信念(称为后验概率)(称为后验概率),在遇到一些新的信息后,可以将其视为一种感官标志或信号(s)。结果(即后验概率)是有条件的概率,因为它取决于(即条件为基础)新信息(即给出e或符号e | s)。尽管大多数资源使用比例呈现了贝叶斯定理的计算,但贝叶斯却没有,并且使用频率可以简单地理解数学(例如,Gigerenzer&Hoffrage,1995)。要计算更新的条件概率,人们需要知道在信号(E&S)存在下发生结果或事件的频率以及信号自然显示的频率。使用这两个信息,后验概率仅为E&S /S。在任何一天,一个人的信心(即先前的概率)大约为10%(即3 / 〜30)。但是,如果那天多云,它的信心会下雨(后概率,e | S)为33%(即3 /9)。