位移铁电体中序参量的集体振幅模式称为铁素体,表示长程有序极化的振幅波动。在远低于相变温度 T c 的温度下,铁素体激发的能量在长波长极限内明显间隙。当接近 T c 时,该间隙急剧软化为最小值或无间隙值,从而对热性能产生重大贡献。在此背景下,我们通过结合位移铁电体的微观自洽相变理论来探索铁素体在热容量和热传输中的作用,而不是传统的将热性能仅归因于声学声子的方法。以铁电体 PbTiO 3 为例,我们表明,相变附近铁素体的软化对于准确捕捉热性能的实验温度和电场依赖性至关重要。
Compact motorized beam expanders MEX 146 Compact motorized laser beam expanders MEX-V2 148 High-power motorized beam expanders MEX-HP 150 High-power motorized beam expanders MEX-HP-V2 152 Vertical motorized laser beam expander MEX-V 154 Variable beam expanders VEX and reducers VRE 156 Fixed ratio beam expanders FEX 158 Motorized laser power attenuators LPA 159先进的电动激光衰减器LPA-A 160手动激光衰减器LPA-M 161 OEM激光功率衰减器LPA-OEM LPA-OEM 162未极化的光束激光激光功率衰减器LPA-U LPA-U 163平面转换器FTC 164摩托车旋转器MRO 165摩托车Mro 165
我们提出的不同运输测量值在最近发现的重毛力超导体UTE 2中,沿着以身体为中心的原晶结构的易于磁化A轴施加了磁场。热电功率随温度高于超导过渡的温度而变化,T SC = 1。5 K,表明超导性在费米液体方向发展。作为场的函数,热电学功率显示了连续的异常,这归因于场诱导的费米表面不稳定性。这些费米 - 表面不稳定性出现在磁极化的临界值处。值得注意的是,与沿B-轴施加的磁性的第一阶metAgnetic跃迁相比,磁化强度(0.4 µ b)的磁性临界值(0.4 µ b)的最低磁场不稳定发生。低温下估计的电荷载体数量揭示了与LDA计算不同的金属基态,表明强电子相关是该化合物中的主要问题。
摘要在本文中,我们提出了一种新的最小数学概念方法,用于使用光两极化的量子力学,以使中学学生对量子化,以使学生更接近所谓的量子力学思维方式。我们调查了学生如何思考一些基本概念和基本定律,我们发现某些概念在年轻的年龄段也是可以理解的。我们研究了所谓的状态圈的引入,它可以忠实地代表量子机械形式主义,而无需让学生参与抽象代数计算。然后,我们对学生对叠加原则和缺乏轨迹的想法进行了分类和分析,发现测量和缺乏轨迹的概念是有问题的。我们探讨了年轻的学生倾向于拥有类似格式塔的量子概念的心理模型,同时也能够正确地使用可视化量来在量子领域进行推理。总的来说,本文提供了最早在中学中引入量子力学基本特征的证据。
摘要:基于可再生能源的可靠电网系统是限制气候危机的关键一步。固定式电池储能系统 (BESS) 具有巨大的潜力,可以在不同时间范围内抵消电网中的功率波动。但是,为了可靠地运行和估算成本,需要了解电池的退化情况。我们对 NCM532/Gr 锂离子电池单元的单服务应用和多服务应用进行了加速电池退化研究。频率调节 (FR) 对电池的危害最小,预期寿命为 12 年,而峰值调节 (PS) 的预期寿命为 8 年。联合循环 (FRPS) 加速了容量损失,并且从循环开始就会引起正极的退化,导致仅在 870 个等效全循环 (EFC) 后功率受限。跟踪 1C 速率放电容量被证明是加速电池极化的良好指标,并且可以作为评估内部电池健康状态 (SOH) 的有用方法。
对冲。美国目前的做法是应对三种意外情况:地缘政治(例如,突然的政治重组导致出现新的对手)、技术(例如,现有弹头或运载系统出现严重问题)和技术(例如,军事应用新技术,产生新的核需求)。在一个更加多极化的世界里,地缘政治和技术意外的可能性增加,恢复原状可能还不够。美国可以合理地预测未来几年可能出现的“意外”,决定愿意接受哪些风险,并试图减轻其余风险。这需要具备快速设计、认证和制造满足潜在新核需求所需武器的常备能力。缓解战略还有另一个价值:它们表明美国决心确保其威慑的有效性,而这一点在目前还存在疑问的时候。9. 多极化也对政治和外交战略产生重要影响,以
光子纳米结构与量子发射器之间的手性光 - 脱子相互作用显示出实现量子信息处理的自旋 - 光子界面的巨大潜力。量子发射极的位置依赖性自旋动量锁定对于这些手性耦合纳米结构很重要。在这里,我们报告了量子点(QD)和跨波导之间的位置依赖性手性耦合。选择在横截面中不同位置分布的四个量子点以表征设备的手性特性。定向发射是在单个波导和两个波导中同时实现的。此外,可以用四个输出的手性对比确定QD位置。因此,通过将QD放置在合理位置,跨波导可以充当单向单向波导和圆形极化的光束分离器,该位置具有潜在的应用程序,该QD在单个光子水平上的复杂量子光学网络中具有潜在的应用程序。
全息图是一种基石表征和成像技术,可以应用于从X射线到无线电波甚至中子等颗粒的完整电磁频谱。所有这些全息方法中的关键特性是通过干扰参考光束来提取相信息所需的连贯性 - 没有此,全息摄影是不可能的。在这里,我们介绍了一种基于本质上不连贯和非极化的光束的全息成像方法,因此可以从经典的干扰测量中提取任何相信息。相反,全息信息是按照纠缠状态的二阶相干性编码的。使用空间偏振超倾斜光子对,我们远程重建复杂物体的相位图像。信息被编码为纠缠状态的极化程度,使我们能够通过动态相位障碍,甚至在存在强经典噪声的情况下进行图像,并且与经典相干全息系统相比,空间分辨率增强。超出成像,量子全息量量化了10 4
摘要 —基于密度泛函理论(DFT)计算,提出了一种关于HfO 2 基铁电器件中氧空位(Vo)的新机制。在该机制中,除了已知的o相HfO 2 之外,m相HfO 2 中的Vo不仅作为电子陷阱而且也表现出铁电性。而“唤醒”过程中剩余极化的增加主要归因于这部分Vo-m相HfO 2 铁电单元。基于新机制,开发了动力学蒙特卡罗(KMC)模拟器来量化在HfO 2 基铁电器件中观察到的典型电场循环行为,包括唤醒、疲劳、分裂和击穿效应。这种新的认识建立了Vo与循环行为之间的关系,并进一步揭示了掺杂剂与HfO 2 基铁电器件唤醒特性之间的联系。
我们提供了一种简单而直观的理论,可以解释分子与光腔的耦合如何通过利用轻质 - 强度相互作用的固有量子行为来改变地面态化学反应性。使用最近开发的极化Fock状态代表,我们证明,由于具有偏振液体的重叠的糖尿病电子耦合的缩放,因此实现了地面电势的变化。我们的理论预测,对于质子转移模型系统,当腔频率在电子激发范围内时,可以通过光物质相互作用来修饰基态屏障高度。我们的简单理论解释了一些最近发现相同效果的计算研究。我们也表明,在光和物质的深厚耦合极限下,极化的地面和第一个激发的特征态成为Mulliken-Hush的绝热状态,后者是偶极子操作员的本征态。这项工作提供了一个简单但功能强大的观念框架,以了解分子和腔之间的强耦合如何修改基态重复性。