15.补充说明由船舶结构委员会赞助。由其成员机构共同资助。16.摘要材料和船舶建造技术的不断改进令人鼓舞。日益敏感的公众要求政府、航运公司和船级社找到使船舶更安全的方法。作为这一趋势的一部分,新的船舶结构规则超越了使用屈服作为设计标准的传统方法。20 世纪 80 年代和 90 年代制定的冰级规则都是使用塑性极限状态来制定板和框架的尺寸。该研究计划始于验证单个框架的极限状态方程,确定有效性的任何限制,并探索框架在板架中的相互作用方式。17.关键词 18.分发声明 分发可通过以下方式向公众提供: 国家技术信息服务 美国商务部 斯普林菲尔德,弗吉尼亚州 22151 电话(703) 487-4650
8.11 扩展基础设计 8-23 8.11.1 基础设计的荷载和荷载系数应用 8-24 8.11.2 基础基础设计 8-27 8.11.2.1 基础承载深度 8-28 8.11.2.2 附近结构 8-28 8.11.2.3 基础的使用极限状态设计 8-28 8.11.2.3.1 无粘性土上基础的沉降 8-28 8.11.2.3.2 岩石上基础的沉降 8-29 8.11.2.3.3 使用推定值计算使用极限状态下的承载力 8-29 8.11.2.4 基础的强度极限状态设计 8-29 8.11.2.4.1 承载力的理论估算8-29 8.11.2.4.2 板荷载试验确定土壤承载力 8-30 8.11.2.4.3 岩石上基础的承载力 8-30 8.11.2.5 基础的极端事件极限状态设计 8-30
海上风力涡轮机 (OWT) 支撑结构处于恶劣环境中,由高度随机的载荷和复杂的土壤-结构相互作用定义,因此需要采用概率方法进行设计。本文进行的研究通过专门开发的模块化非侵入式结构可靠性评估公式对这些固有随机变量施加在复杂的 OWT 支撑结构上进行了敏感性分析。这项研究的结果表明,对于极限状态 (ULS) 和疲劳极限状态 (FLS),风速的不确定性是结构设计的驱动因素,而流体动力载荷效应是次要的,而它们对使用极限状态 (SLS) 的相对敏感性无法清楚区分,但被认为具有主导影响。此外,据推断,在 ULS 设计中,变量之间的相关性对结构的可靠性有显著影响。© 2022 由 Elsevier BV 代表韩国造船师协会制作和托管。这是一篇根据 CC BY-NC-ND 许可协议 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 开放获取的文章。
在浮动式海上风电 (FOW) 系泊系统中,组件或系统故障可能造成各种后果,从性能的相对微小变化一直到完全失去定位并损坏阵列内的其他装置。收入损失、中断和恢复和维修费用可能会损害众多利益相关者(开发商、制造商、运营商和最终用户)的业务和声誉。商业 FOW 农场中相邻平台与其他水上用户之间的潜在相互作用意味着系泊故障的风险及其影响必须最终在农场层面进行评估,例如,意外极限状态 (ALS) 下平台分离的要求。还存在超出可服务极限状态 (SLS) 的可能性,这会影响发电,而无需系泊系统完全故障。
ACP 美国清洁能源 DFMEA 设计故障模式与影响分析 DLC 设计载荷工况 dWAM 分布式风气动弹性建模 ECD 具有方向变化的极端相干阵风 ECG 极端相干阵风 EDC 极端方向变化 EOG 极端运行阵风 EOG 1、EOG 50 具有 1 年和 50 年重现期的 EOG ETM 极端湍流模型 EWM 极端风速模型 EWS 极端风切变 FLS 疲劳极限状态 HAWC2 水平轴风力涡轮机模拟代码 第二代 HAWT 水平轴风力涡轮机 IEC 国际电工委员会 IECRE IEC 可再生能源应用设备标准认证体系 NREL 国家可再生能源实验室 NTM 正常湍流模型 NWP 正常风廓线模型 O&M 运营和维护 OEM 原始设备制造商 PSF 部分安全系数 RRD RRD Engineering, LLC SLS 使用极限状态 ULS 极限状态 VAWT垂直轴风力涡轮机 V&V 验证和确认 WTG 风力发电机 数学符号 A 威布尔尺度参数 𝐹𝐹 𝑘𝑘 通用特征载荷 k 威布尔形状参数 I ETM ETM 湍流强度 PE (𝐹𝐹 𝑘𝑘 ) 超过 𝐹𝐹 𝑘𝑘 的概率 p 0 参考大气压 T ECD ECD 的瞬态持续时间 T EDC EDC 的瞬态持续时间 T EWS 极端风切变 (EWS) 的瞬态持续时间 T 阵风 EOG 的阵风持续时间
本文档旨在指导读者了解与固定式海上风力涡轮机支撑结构相关的不同分析,以及 Sesam 和 Bladed 如何支持这些结构。Sesam 可以执行适用于海上风力涡轮机 (OWT) 支撑结构行业的多种不同分析,这些分析基于海上石油和天然气行业多年来经过验证的技术,并根据 IEC61400-3-1、DNV 标准 DNV-ST-0126(风力涡轮机支撑结构)和 DNV-ST-0437(风力涡轮机载荷和场地条件)等国际标准扩展了针对海上风电行业的新功能,以及 DNV 建议实践 DNV-RP-C203(海上钢结构疲劳设计)和 DNV-RP-0585(风力发电厂抗震设计)。在初步设计中,Sesam 可用于固定式海上风力涡轮机结构的建模和各种类型的分析。支撑结构可在 3D 建模环境中建模。建模过程中的优势包括参考点建模和参数化脚本,从而形成一个强大的界面,可以快速高效地对多个概念设计进行权衡研究。概念设计阶段可以执行的一些分析包括固有频率分析(特征值分析)、极限状态 (ULS) 和正常使用极限状态 (SLS) 分析(包括构件和接头规范检查),以及使用损伤等效载荷或波浪载荷的疲劳极限状态 (FLS) 分析。在这些静态分析中可以执行非线性桩土分析,而动态分析中要使用的等效线性化桩土弹簧矩阵可以由软件自动获得。在详细设计阶段,Sesam 可用于固定式海上风力涡轮机结构,从定制工作台 Sesam Wind Manager 执行时域分析。Sesam Wind Manager 可以在时域中执行疲劳分析 (FLS) 以及极限强度分析 (ULS) 和地震分析。这些分析可以通过两种方式执行,要么使用超元素方法,要么使用完全集成的方法:
在本手册中,推荐的设计方法是允许应力设计 (ASD),因此在材料应力和连接处力的产生过程中,内置了安全系数 (FS)。本手册之所以选择这种设计方法,是因为 ASD 仍然是轻型框架、住宅、木结构的主要设计方法。大多数木结构硬件和连接器供应商都会为其产品提供负载限制,并在限制中内置安全系数。如果设计师更喜欢这种极限强度或极限状态设计方法,则可以为木材提供负载和抗力系数设计 (LRFD) 指导。
在本手册中,推荐的设计方法是允许应力设计 (ASD),因此在材料应力和连接处力的形成过程中会考虑安全系数 (FS)。本手册之所以选择这种设计方法,是因为 ASD 仍然是轻型框架、住宅、木结构的主要设计方法。大多数木结构硬件和连接器供应商都会为其产品提供负载限制,并在限制中考虑安全系数。如果设计师更喜欢这种极限强度或极限状态设计方法,则可以为木材提供负载和抗力系数设计 (LRFD) 指导。
在本手册中,推荐的设计方法是允许应力设计 (ASD),因此在材料应力和连接处力的形成过程中会考虑安全系数 (FS)。本手册之所以选择这种设计方法,是因为 ASD 仍然是轻型框架、住宅、木结构的主要设计方法。大多数木结构硬件和连接器供应商都会为其产品提供负载限制,并在限制中考虑安全系数。如果设计师更喜欢这种极限强度或极限状态设计方法,则可以为木材提供负载和抗力系数设计 (LRFD) 指导。
在本手册中,推荐的设计方法是允许应力设计 (ASD),因此在材料应力和连接处力的形成过程中会考虑安全系数 (FS)。本手册之所以选择这种设计方法,是因为 ASD 仍然是轻型框架、住宅、木结构的主要设计方法。大多数木结构硬件和连接器供应商都会为其产品提供负载限制,并在限制中考虑安全系数。如果设计师更喜欢这种极限强度或极限状态设计方法,则可以为木材提供负载和抗力系数设计 (LRFD) 指导。