要解释,列出Cheryl生日的可能日期以网格格式,如图1所示。在这个网格中,阿尔伯特被告知谢丽尔的生日那个月,而伯纳德则在谢丽尔的生日那天被告知。因此,如果谢丽尔(Cheryl)的生日是5月19日,艾伯特(Albert)会被告知“五月”,而伯纳德(Bernard)会被告知“ 19”。但被告知“ 19”将允许伯纳德立即获得正确的答案,因为在一个月的第19天只有一个可能的日期。同样,如果谢丽尔(Cheryl)的生日是6月18日,伯纳德(Bernard)可能会立即达到正确的答案,因为只有一个可能的日期属于一个月的第18天。阿尔伯特的说法“我确定伯纳德都不知道”,这是很有意义的,因为它告诉我们,阿尔伯特能够排除5月19日和6月18日。如果他被告知“五月”或“六月”,他就无法将他们排除在外。因此,阿尔伯特(Albert)可以断言伯纳德(Bernard)不知道这一事实意味着他(阿尔伯特(Albert))并未被谢丽尔(Cheryl)告知“五月”或“六月”。
∗本文最初于2018年6月以较短的形式发行,如Budish(2018)。†致谢:我感谢联合编辑Andrei Shleifer和五个匿名裁判,以极大地改善论文。Thanks are also due to Susan Athey, Vitalik Buterin, Glenn Ellison, Gene Fama, Alex Frankel, Joshua Gans, Edward Glaeser, Austan Goolsbee, Hanna Halaburda, Zhiguo He, Joi Ito, Steve Kaplan, Anil Kashyap, Judd Kessler, Scott Kominers, Randall Kroszner, Robin Lee, Jacob Leshno, Andrew Lewis-Pye, Shengwu Li, Neale Mahoney, Gregor Matvos, Sendhil Mullainathan, Vipin Narang, Neha Narula, David Parkes, Tim Rough- garden, John Shim, Scott Stornetta, Adi Sunderam, Chad Syverson, Alex Tabarrok, Rakesh Vohra, Aviv Zohar, and seminar participants at MIT数字货币倡议,NBER货币经济学,哈佛大学,卡内基·梅隆,UPENN,虚拟市场设计,UIC,东京大学,西北大学,爱荷华州国家市场设计会议,哥伦比亚,斯坦福和NBER市场设计。Ethan Che,Natalia Drozdo Q,Matthew O'Keefe,Anand Shah,Peyman Shahidi,Jia Wan和Tianyi Zhang提供了出色的研究帮助。披露:作者是一个项目顾问,该项目频繁地进行分散批处理,以进行分散的财务。作者没有与这项研究有关的任何其他财务利益。‡芝加哥大学商学院,eric.budish@chicagobooth.edu
基本量子门(尤其是双量子比特门)的速度最终决定了量子电路运行速度的极限。在这项工作中,我们通过实验证明了常用的双量子比特门的速度几乎是两个超导传输量子比特之间的物理相互作用强度所允许的最快速度。我们通过实施使用机器学习启发的最优控制方法设计的实验门来实现这一量子速度极限。重要的是,我们的方法仅要求单量子比特驱动强度略大于相互作用强度,即可实现接近其分析速度极限的任意双量子比特门,并且保真度高。因此,该方法适用于各种平台,包括具有可比单量子比特和双量子比特门速度的平台,或具有始终在线相互作用的平台。我们期望我们的方法能够为非原生双量子比特门提供显著的加速,而这通常是通过一长串单量子比特和原生双量子比特门来实现的。
我们研究了基于映射到大 n 极限下的 n 量子比特中心自旋模型 (CSM) 的非线性量子比特演化模型,其中平均场理论是精确的。扩展了 Erdös 和 Schlein 的定理 [ J. Stat. Phys. 134, 859 (2009) ],我们建立起当 n →∞ 时,CSM 与非线性量子比特严格对偶。对偶性支持在诸如凝聚态之类的系统中进行一种非线性量子计算,其中大量辅助粒子对称地耦合到中心量子比特。它还支持具有严格误差界限的非线性量子模拟的门模型实现。该模型的两种变体(有和没有辅助粒子耦合)映射到具有不同非线性和对称性的有效模型。在没有耦合的情况下,CSM 模拟初始条件非线性,其中哈密顿量是 tr( ρ 0 σ x ) σ x 、tr( ρ 0 σ y ) σ y 和 tr( ρ 0 σ z ) σ z 的线性组合,其中 σ x 、σ y 和 σ z 是泡利矩阵,ρ 0 是初始密度矩阵。通过对称辅助耦合,它模拟 tr( ρσ x ) σ x 、tr( ρσ y ) σ y 和 tr( ρσ z ) σ z 的线性组合,其中 ρ 是当前状态。这种情况可以模拟量子比特扭转,Abrams 和 Lloyd [ Phys. Rev. Lett. 81, 3992 (1998) ] 已证明这可以在理想设置中使状态鉴别的速度呈指数级加速。从量子基础的角度来看,这里讨论的对偶性也可能很有趣。长期以来,人们一直对量子力学是否可能具有某种类型的小的未观察到的非线性感兴趣。如果不是,那么禁止它的原理是什么?对偶性意味着根据线性和非线性量子力学演化的宇宙之间没有明显的区别:在大爆炸时以纯状态 | ϕ ⟩ 准备的单量子比特宇宙,与以相同状态准备的辅助粒子对称耦合,只要有指数级数量的辅助粒子 n ≫ exp[ O ( t )],似乎就会在任何有限时间 t > 0 内非线性演化。
社会和经济体正在经历重大的过渡和挑战,例如数字化转型,绿色过渡,人口变化,日益增长的地缘政治鸿沟以及全球Covid-19-19。所有这些都强调了韩国经济模式和国家创新制度的脆弱性和优势,并强调了对不断关注的不断关注的需求。虽然韩国通常被认为是某些数字技术的创新领导者,这也有助于在Covid-19危机开始时广受认可的大流行反应,但这些新兴技术也为更传统的制造业带来了巨大的破坏性潜力。此外,日益增长的地缘政治鸿沟特别揭示了韩国嵌入全球价值链中的一些脆弱性。此外,绿色过渡和人口衰老将显着塑造韩国工业和社会。为了为这些挑战带来的结构变化做准备,STI政策应扮演领导角色。本评论对韩国在社会挑战中如何利用其在STI中的世界潜力来实现韧性并巩固其作为全球创新领导者的地位。
AVIASPACE BREMEN e. V. 是不来梅自由汉萨城市联邦州及其周边地区的专业公司和应用型研究机构的协会。该网络实施不来梅联邦州的航空航天工业部门战略。我们的主要领域是网络组建、技术转让和经济增长,特别是通过培养年轻企业家和初创企业。这包括最终生产商、供应商和/或服务提供商以及材料科学、高升力系统、生产技术、机器人技术和地球观测领域的科研机构之间的技术和组织网络。
对于某项机器设计任务,对所有可能的机器配置进行深入的数值模拟是一项极其耗时且计算密集的任务。本文提出的功率密度问题解析公式具有为各种机器配置估算功率密度的优势。同时,它促进了机器设计,这种设计基于对整个解决方案范围的内在理解,而不是基于数值优化方案,因为在数值优化方案中,全局层面的收敛行为通常难以评估和确保。虽然解析公式缺乏有限元模拟的精度,但它将可能的解决方案范围缩小到一定程度,从而可以通过合理的时间和计算工作量进行详细的数值模拟。
摘要恶性神经胶质瘤的渗透性会导致活性肿瘤扩散到周围的水肿中,即使在对比度注射后,在常规磁共振成像(CMRI)中也不可见。MR弛豫计(QMRI)测量弛豫率取决于组织特性,并可以提供其他对比机制,以突出非增强的浸润性肿瘤。在考虑深度学习的脑肿瘤检测和分割,术前常规(T1W次和对比度,T2W和FLAIR)以及定量(对比前和后对比度r 1,r 2和Proton密度)中,从23个典型的RADI中获得了一名典型的RADI,与CMRI数据相比,与CMRI序列相比是否提供了其他信息。在考虑基于深度学习的脑肿瘤检测和分割,术前常规(T1W per和Contyptrast和Contypontast,T2W和FLAIR),T2W和FLAIR)以及定量(前后和后对比度R 1,R 2和Proton MINID)MR研究中获得了23个典型的RADI较高的RADI,则获得了GREN。2D深度学习模型对使用CMRI或QMRI进行了横向切片(n = 528)的培训(n = 528),以进行肿瘤检测和分割。此外,对定量r 1和r 2的趋势通过模型解释方法与肿瘤检测相关的区域速率进行了定性分析。肿瘤检测和分割性能,用于对比前和对比后训练的模型最高(检测MATTHEWS相关系数(MCC)= 0.72,分割骰子相似系数(DSC)= 0.90),但是与CMRI相比,差异并不统计具有统计学意义。对使用模型识别的相关区域进行的总体分析表明,在CMRI或QMRI上训练的模型之间没有差异。查看各个病例时,注释以外的大脑区域的松弛率与肿瘤检测相关,在大多数情况下类似于注释中的区域类似的对比注射后显示出变化。总而言之,对QMRI数据培训的模型获得了与接受CMRI数据训练的模型相似的检测性能和分割性能,并在类似的扫描时间内定量测量脑组织性能。在考虑单个患者时,通过模型确定的区域的放松率分析表明,基于CMRI的肿瘤注释以外存在浸润性肿瘤。
1。Globe模型规则规定了标准化地球仪信息返回(GIR)的开发。GIR包含税务管理所需的信息,以进行适当的风险评估并评估组成实体的正确性(CE)的上传税责任。特别是,《环球模型规则》第8.1.4条提供了要包含在GIR中的信息项的概述。规则还规定,该列表应根据《环球报实施框架》进行进一步指定,扩展或限制,包括通过制定简化的报告程序。本文档列出了GIR的标准模板,该模板包含了在第8.1.4条的背景下,在BEPS(“包含框架”)上包含的框架已同意的编辑。
测试样品或相机的平移。虽然使用立体 DIC 进行成形性测试具有许多优势,但商用立体 DIC 系统的高成本仍然是其广泛使用的重大障碍,特别是在需要大量投资的学术机构中。在这方面,如果有办法克服 2D DIC 测量中与平面外平移相关的误差,它将为大规模采用 DIC 进行成形性测试铺平道路。在之前的出版物 [3] 中,作者表明,如果操作正确,即使对于较大的局部应变(断裂应变),2D DIC 测量也可以与立体 DIC 测量相匹配。除此之外,作者之前还提出了一种简单的补偿方法,用于使用单相机 DIC 系统从 Marciniak 测试中获得准确可靠的平面内 FLC [4]。他们的方法不适用于平面外 Nakazima 测试,该测试在金属板材成形行业中被广泛采用且更受欢迎。这项工作解决了这一差距,并提出了一种与材料无关、简单且易于实施的 2D DIC 应变补偿方法,用于确定非平面 Nakazima 球冲试验中的 FLC。
