以限制的氧气运输为突出的特征,水平地下流构建的湿地(HSCW)提出了一种有前途的方法,可以进一步降低废水排放中的氮化合物的水平,尤其是No3 -n -N的水平。
现代运输系统对经济发展和社会舒适的需求不断增加,这正在促进全球变暖和一些危险的气候变化的日益增长的存在。这些不利环境影响的主要原因是由于内燃烧汽车发出的有害环境污染物。世界对标准燃烧发动机车辆依赖的一种潜在替代方法是电动汽车。电动汽车电动火车主要由储能系统,电动机,电动机转换器组成,以驱动电动机和电动汽车充电电路。EV充电电路基本上被分类为板上充电器和板上充电器,具体取决于其位置。如果充电电路被合并到电动汽车动力列车本身中,则是板载充电器,如果将其分别放置在公共区域中,则是一个外部
共晶工程正在吸引越来越多的兴趣,这是一种具有有趣属性的新材料的有前途的方式,并且正在进行的研究正在制定可靠的设计规则以进行合并。1 2 3 4组成分子的大小和形状(此处称为构造)5是控制晶格排列的重要因素,以及由固态堆积产生的紧密分子间相互作用的强度和方向性。6 7原则上,当所有构造构成具有明确定义的刚性分子时,相对容易预测可能的晶格包装。共结晶晶格预测变得更具挑战性。6 7 8在这种情况下,最简单的概念方法是假设所有柔性构造都采用了最低的能量构象。然而,这种范式忽略了高能构象中的柔性构造可能会导致更有利的固态填料,这是由于官能团的定位,因此可能会允许更有利的固态包装。换句话说,增加的有利分子间相互作用数量增加可以抵消当构造采用高能量分子构象时所产生的能量惩罚。6 9
购买设备项目。 创建新的独立结构或扩展现有结构以增加总面积。 改进和/或重新配置现有设施的内部布置。 安装永久固定设备。 改造和/或维修建筑物外部(包括窗户)。 供暖、通风和空调 (HVAC) 改造(包括安装气候控制和管道系统)。 电气升级和/或管道工程。 从规模、面积以及受影响的临床和非临床区域方面确定项目活动。 o 从规模、面积以及受影响的临床和非临床区域方面确定项目活动。 o 描述拟议的施工方法,例如设计/建造、有风险的施工管理、由申请人自己的力量进行或是否将使用第三方施工经理。 • 时间表 描述完成项目所需的活动或步骤。使用包含以下每项活动并确定负责人员的时间表:
‘我需要做什么才能有所作为?作为临床医生,可能是我们最重要的问题,经常被问到的问题。在这种有见地且易于访问的逻辑症状病例中,著名作者和编辑玛格丽特·沃尔什(Margaret Walshe)和尼克·米勒(Nick Miller)与受邀作者一起描述了许多相关且有益的案例示例,这些案例,这些案例揭示了与异性疾病和临床医生有关的交流问题所面临的交流问题的深度和复杂性。,他们热情地做到这一点。Walshe和Miller为我们提供了向个人学习的机会,从而在其他情况下找到适用的原则。我们获得了新的观点,而不仅仅是解决问题”。瑞典哥德堡大学卫生与康复系Lena Hartelius教授
摘要加密算法QARMA是一个轻巧的可调节块密码的家族,可以在诸如内存加密和键入哈希函数的构建等应用程序中获得。在硬件中利用轻度安全性具有将机制采用电池约束的使用模型,包括可植入和可穿戴医疗设备。这个轻巧的块密码利用了一个取代置换网络(SPN),该网络的灵感来自诸如王子,螳螂和中部的块密码。此外,它使用三轮偶数拼写方案而不是FX-construction,其中央置换量无关紧要和键盘。在本文中,我们介绍了有关QARMA变量,Qarma-64和Qarma-128的错误检测方案,据迄今为止,尚未提出这一点。我们介绍了基于逻辑的实现的派生,随后,我们为基于LUT的方法提供了基于签名和交错的基于签名和基于签名的方案的派生。为紧凑型,份额和优化的S-box提供了提供的新的基于签名的错误检测方案,包括环状冗余检查(CRC)。此外,通过编码操作数的重新计算允许架构对抗瞬态和永久性故障。此外,这些方案在轨道可编程阵列(FPGA)硬件平台上进行了基准测试,在该平台上,performance和实现指标显示可接受的开销和退化。拟议的方案的目的是使该轻质调整块密码的实现更加可靠。
摘要:Shinagawa 和 Iwata 考虑了 Even–Mansour 和 (SoEM) 构造的量子安全性,并给出了基于 Simon 算法和 Grover 算法的量子密钥恢复攻击。此外,还给出了针对 SoEM 自然泛化的量子密钥恢复攻击。对于 SoEM 的某些变体,他们发现它们的量子攻击并不明显,并将讨论此类构造的安全性作为开放问题。本文重点关注这一开放问题并给出了积极的回应。我们提供了基于量子算法的针对此类构造的量子密钥恢复攻击。对于具有线性密钥调度的 SoEM 自然泛化,我们还给出了基于量子算法(Simon 算法、Grover 算法和 Grover-meet-Simon 算法)的类似量子密钥恢复攻击。
摘要:本文讨论了一种使用原始构造语法 (CG) 格式的知识来深入理解文本的 AI 实现。CG 是一种处理知识片段(又称构造)的方法,这些知识片段描述了文本部分的形式和含义。理解在于自动在文本中查找构造所包含的知识,并创建反映文本信息结构的知识网络。通过在网络内传播知识可以实现更深入的理解,即一些构造可以与其他构造共享有关语法、语义、语用和其他文本属性的信息。这种信息丰富的方法的一个缺点是覆盖范围有限:只能理解 CG 数据库可用的文本;由于该数据库的复杂性,通常需要手动构建。作者尝试通过从外部(非 CG)知识库等来源自动获取词汇知识并将知识格式化为 CG 构造来增加覆盖率。由此产生的 CG 数据库已用于评估实验,以了解 Winograd 模式(WS)——一种 AI 测试。准确覆盖率增加了 28%,并且有进一步改进的机会。
图 1. 完整的风洞组件 ...................................................................................................... 2 图 2. 位于收缩锥前方的蜂窝结构 ...................................................................................... 5 图 3. 拆解的风洞组件:(1)收缩锥,(2)测试/工作部分,和(3)扩散器 ............................................................................................................. 5 图 4. 安装风扇并连接到 12 伏电池的驱动部分 ............................................................................. 6 图 5. 收缩锥示意图 ............................................................................................................. 10 图 6. 测试部分内的安装物体 ............................................................................................. 10 图 7. 扩散器示意图 ............................................................................................................. 11 图 8. 数字风速计 ............................................................................................................. 12 图 9. 双输入数字压力计 ............................................................................................. 12 图 10. 用于收集数据的测试部分内的风速计装置 ............................................................................. 12 图11. 12 伏电池和鳄鱼夹用于为风扇供电 ................................................................ 14 图 12. 收缩锥(SolidWorks) ................................................................
本规范分为以下几个部分:第一部分“入级”;第二部分“船体”;第三部分“设备、布置和舾装”;第四部分“稳性和干舷”;第五部分“分舱”;第六部分“防火”;第七部分“机械设备”;第八部分“系统和管道”;第九部分“机械”;第十部分“锅炉、热交换器和压力容器”;第十一部分“电气设备”;第十二部分“制冷装置”;第十三部分“材料”;第十四部分“焊接”;第十五部分“自动化”;第十六部分“玻璃钢船的船体结构和强度”;第十七部分“无线电设备”;第十八部分“航行设备”。
